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Abstract. Drive-by damage detection for bridges has caught much attention in 

the last decades. A salient advantage of this method is that only a few sensors 

are instrumented on the passing vehicle instead of monitoring systems on the 

bridge itself. Damage detection considering the bridge’s frequencies extracted 

from the vehicle’s vibration data was a promising way confirmed by scholars 

worldwide. However, the current research is typically concerned with low fre-

quency responses of the bridge. High frequency responses that contain bridge 

damage information are ignored. To detect the bridge’s damage accurately, both 

low and high frequency responses of the passing vehicle are considered in this 

paper. Firstly, the vehicle’s frequency responses are utilized as input features to 

train machine learning models to predict whether the bridge is damaged or not. 

Then, the efficiency of training is improved by projecting the Hertz scale fre-

quency responses into the Mel scale to reduce the dimensions of inputs, in 

which the Mel-frequency Cepstral Coefficients (MFCCs) are used to feed ma-

chine learning models. To verify the effectiveness of the proposed method, a 

lab-scale I-shaped simply supported beam and a model car are employed. The 

results demonstrate that the proposed method is promising for damage detec-

tion. 

Keywords: Structural health monitoring, Drive-by, Vehicle bridge interaction, 
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1 Introduction 

As one of the most critical infrastructures, bridges have been aging and deteriorating 

in the past decades. In Europe, a large number of bridges are built before world war II 

and have served for more than half a century [1]. Monitoring their healthy conditions 

becomes crucial in the near future [2]. A promising way to detect the damage is to 

extract the dynamic features from its vibration data [3]. Such dynamic features typi-

cally include natural frequencies, modal shapes, damping [4,5], etc. Dynamic features 

before and after damage can be used as references for damage detection. 

Traditionally, sensors are installed on the bridge directly to collect its vibration da-

ta, and good results have been obtained [6]. However, to apply this method in practi-

cal engineering, a monitoring system is generally needed for a unique bridge. Main-
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taining such a system will be pretty costly. To overcome this problem, the drive-by 

damage detection method was proposed by Yang et al. in 2004 [7]. The bridge’s fun-

damental frequency is successfully extracted from the vehicle’s vibration data. The 

drive-by method is economical and easy to operate since it only needs a few sensors 

installed on the passing vehicles. 

Frequencies, as the fundamental property of the bridge, have been commonly re-

searched in the past two decades using the passing vehicle’s vibration data [8]. The 

bridge’s natural frequencies, modal shapes, and damping can be identified from the 

vehicle’s vibration data, but the practicability of the method is still limited to low 

vehicle speed, road roughness, etc. Many difficulties need to be overcome before 

applying the drive-by method to practical engineering. Due to the development of 

computer computational capability, machine learning techniques have been adopted 

in the field of bridge damage detection [9]. However, in current literature, only the 

peaks or low range of the vehicle’s frequency responses are analyzed; high frequency 

responses are normally ignored because they are easily contaminated by noises.   

This paper proposes a strategy utilizing both the vehicle’s low- and high-frequency 

responses. The approach is explored using a steel bridge model and a model car in the 

laboratory. Mel-frequency cepstral coefficients (MFCCs) are extracted from the vibra-

tion data to improve the efficiency of damage detection. The overview of this paper is 

as follows: Section 2 explains the steps to extract MFCCs and the basic principles of 

support vector machine (SVM) and logistic regression. Section 3 introduces the ex-

perimental setups and damage cases. The results are discussed in Section 4. Finally, 

this paper is concluded in Section 5.  

2 MFCCs, SVM, and logistic regression 

2.1 MFCCs 

MFCC is a particular cepstrum that has been proved as an effective method in acous-

tic feature identification. Compared to traditional analysis of frequency-domain re-

sponses, MFCCs do not just focus on peaks but a range of frequency responses. It has 

been proved that MFCCs can perform well in structural health monitoring problems 

[10,11]. MFCCs are robust when extracting damage-sensitive features under the in-

fluence of noises. In this paper, MFCCs are utilized to reduce input dimensions and 

improve computational efficiency. The original mutual transitions between Hertz and 

Mel frequency scale are shown in Eq. (1), 

 𝑓𝑚𝑒𝑙 = 2595 log10(1 − 𝑓ℎ𝑧/700) (1) 

where 𝑓𝑚𝑒𝑙 is Mel-scale frequencies and 𝑓ℎ𝑧 is Hertz-scale frequencies. However, due 

to the reason that the bridge’s vibration signals are different from sound signals, the 

traditional relationship between Mel and Hertz scales has to be reformed before ap-

plying to bridge damage detection [12]. Since the bridge’s first natural frequencies are 

within 100 Hz, coefficients in Eq. (1) can be reformed as Eq. (2). The updated rela-

tionship between Mel and Hertz frequencies is shown in Figure 1.  

 𝑓𝑚𝑒𝑙 = 5 𝑙𝑛(1 − 𝑓ℎ𝑧/5) (2) 
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Fig. 1. Relationship between reformed Mel scale and Hertz scale 

To extract MFCCs from the passing vehicle’s vibration data, there are five steps to be 

executed: (1) Data preprocessing; (2) Fast Fourier Transform (FFT); (3) Mel Fil-

terbank; (4) Logarithm; (5) Discrete Cosine Transform (DCT). Before transferring the 

original signals from time-domain to frequency-domain, the Hann window is utilized 

to avoid frequency spectrum leakage induced by signal truncation, and FFT is em-

ployed to transform the windowed frame into frequency responses.  For each energy 

spectrum, Eq. (2) is used to project it into Mel frequency scale. Then the energy spec-

trum in the Hertz scale is convolved with Mel filter banks. After that, a logarithm and 

a DCT are applied for each bank to obtain the final MFCCs. This process can be rep-

resented in Eq. (3), 

 𝒎𝑖 =  𝐷(𝑙𝑛(𝑀𝑒𝑙(|𝐹(𝒙𝑖)|2))), 𝑖 = 1,2,3,···, 𝑛 (3) 

where 𝒙𝑖 is the original accelerations, and  𝒎𝑖 is the vector of MFCCs. 𝐹 is the Fast 

Fourier Transform, and 𝑀𝑒𝑙 represents the transformation from Hertz scale to Mel 

scale. 𝐷 means Discrete Cosine Transform. After the above steps, the final MFCCs 

can be obtained.  

 

2.2 SVM and logistic regression 

SVM. SVM is a popular classifier in machine learning, and it has been utilized in 

structural health monitoring due to its good explainable property. The basic principle 

of SVM is to maximize the margin between two classes using a hyperplane. If the 

datasets own 𝑚 samples presented by {(𝒙𝑖 , 𝑦𝑖), 𝑖 = 1,2,3, … , 𝑚; 𝑦𝑖 ∈ {1, −1}}. For a 

linear classification problem, the optimal hyperplane can be represented as  

 𝒘 · 𝒙𝑖 + 𝑏 = 0, (4) 

where 𝒘 is the weight vector, 𝒙𝑖 represents all data points on the optimal hyperplane, 

and 𝑏 is the bias. The proposed problem can be solve by introducing standard La-

grange multiplier method that can be found in reference [13]. When the two classes 

cannot be linearly separated, the kernel function 𝐾 is introduced.  𝐾 can project all 

features to a higher space and make two classes linearly separable. General kernel 

functions and their hyperparameters can be found in Table 1.  
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Table 1. Kernel functions and hyperparameters. 

Kernel Formulars Hyperparameters 

Linear 𝐾(𝒙, 𝒚) = 𝒙 ∙ 𝒚 𝐶 

Polynomial 𝐾(𝒙, 𝒚) = (𝛾(𝒙 ∙ 𝒚) + 𝑟)𝑑 𝐶, 𝛾, 𝑟, 𝑑 

Sigmoid 𝐾(𝒙, 𝒚) = tanh (𝛾(𝒙 ∙ 𝒚) + 𝒓) 𝐶, 𝛾, 𝑟 

Radial basis function (RBF) 𝐾(𝒙, 𝒚) = 𝑒−𝛾‖𝒙−𝒚‖2
 𝐶, 𝛾 

 

Logistic regression. Logistic regression is a good linear classifier in machine learn-

ing. It is based on linear regression that can be represented as Eq. (5),  

 𝑧 =  𝜃0𝑥0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛= 𝜽𝑇𝒙 (5) 

where 𝜽 is the coefficient vector for the linear regression model. 𝒙 are features (𝑥0 =
1). Utilizing Eq. (5), all features are transformed to a continuous value 𝑧. However, 

when the labels are different classes. It cannot be used to calculate the loss between 

true class and predict value. To solve this problem, the linking function, Sigmoid 

(𝑔(𝑧) =  1/(1 + 𝑒−𝑧)), is employed to project all values into 0-1. The projected value 

𝑔(𝑧) is regarded as the possibility belonging to class 1, so the possibility for class 0 

can be obtained as  1 − 𝑔(𝑧).  The loss for the logistic regression model is deduced 

by Maximum Likelihood Estimation (MLE) which can be found in reference [14]. To 

overcome the overfitting problem, 𝑙2 regularization is utilized in this paper.   

3 Lab-scale experiments 

3.1 Experimental setups 

  

(a) Bridge and car                      (b) Boundary conditions            (c) Cross-section           

Fig. 2. Model of the vehicle bridge interaction system 

To verify the proposed method, a lab-scale experiment is performed. In the exper-

iment, an I-shaped simply supported HEA400 beam made by Q355 is utilized. The 

beam’s length is 4.4 m in total, and its support length at each end is 0.2 m. The total 

mass of the beam is 550 kg. The beam, its cross-section, and the boundary conditions 

can be found in Figure 2.  

A model car driven by a remote unit is utilized to simulate a vehicle on the bridge. 

The car’s mass is 9.462 kg, with the front axle of 4.315 kg and the rear axle of 5.147 

kg. Two accelerometers are installed on the car’s front and rear axles to collect vibra-
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tion data. The sampling frequency is set as 10 kHz. The experiment is performed in 

the structural laboratory at Aalto University with environmental noises.  

3.2 Bridge’s damage 

Damages in experiments are normally simulated by stiffness reduction, but it is diffi-

cult to find real damage in engineering. Since this paper analyzes the vehicle’s fre-

quency responses and the bridge’s natural frequencies are determined by its stiffness 

and mass matrices, the method of adding mass to the beam is adopted [15]. There are 

three cases in total: 0 kg (intact), 2 kg (minor damage), and 20 kg (large damage), 

which are summarized in Table 2. The mass is added by a hook weighing 2 kg. The 

damage degree is defined as the ratio of added mass to the beam’s mass. 

Table 2. Damage cases. 

Cases Intact Minor damage Large damage 

Added mass 0 kg 2 kg 20 kg 

Position - 0.5 L1 0.4 L 

Runs 563 67 66 

Damage degree 0.00 % 0.73% 4.00 % 

3.3 Machine learning training and testing 

In this paper, the sci-kit learn package [16] in Python 3.8 environment is employed to 

train the SVM and logistic regression models. Both frequency responses and MFCCs 

are utilized as input features. Before training, all features are normalized to eliminate 

the influence of different scales. For each training, the same samples are selected from 

intact cases and damaged cases to avoid data imbalance problems. For example, when 

identifying large damages, 66 samples are randomly selected from the intact cases. 

This process is executed ten times to circumvent the occasionality of selection from 

intact cases. The 5-fold cross-validation (CV) strategy is employed to obtain the test-

ing accuracy for damage detection. In this case, if the accuracy is near 50%, it means 

that the machine learning model cannot classify the intact and damaged cases.  

4 Experimental results and discussions 

4.1 Frequency-based SVM 

As mentioned before, only using low frequency responses is normally hard to deter-

mine the bridge’s healthy conditions. In this paper, high frequency responses of the 

vehicle’s vibration are explored. Firstly, the large damage case and health damage 

case are utilized for analysis. Firstly, all kernels’ hyperparameters are set as: 𝐶 =
1.0, 𝛾 = 0.01, 𝑟 = 0, 𝑑 = 3 for the SVM model. The 5-folder CV accuracy results 

with respect to used frequency responses are shown in Figure 3.  

It can be seen from Figure 3 that with the increase of used frequency responses, the 

accuracy increases as well (“Linear kernel”). When the selected frequency range is 

 
1  L: the beam’s span length (4.0 m, the supportive length is not included) 
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0~200 Hz, all four kernels' accuracy is relatively low. If 0~400 Hz frequency respons-

es are utilized for analysis, the CV accuracy becomes higher (“Linear kernel”). After 

more than 400 Hz frequency responses are employed, the accuracy becomes stable. 

Also, it can be seen that when “Polynomial”, “RBF”, and “Sigmoid” kernels are used, 

the accuracy is poor. This is because these three kernels’ hyperparameters normally 

need to be adjusted to suit the special problem, and a grid search strategy is needed to 

improve their accuracy. However, with the increase of selected frequency responses 

(input features), the computation will become heavier. Grid search requires enormous 

amounts of computational resources and even cannot be achieved. Thus, dimension 

reduction is needed for frequency responses.  

 
Fig. 3. Accuracy with respect to selected frequency range 

4.2 MFCCs-based SVM 

To improve the computational efficiency, the vehicle’s frequency responses are trans-

formed to MFCCs using Eq. (3). An important step before the transformation is to 

select a suitable number of Mel filter banks. More filter banks mean that the frequen-

cy responses are divided finely, but the computational load will also increase. If few 

Mel banks are utilized, the damage sensitive features may not be extracted successful-

ly. The CV accuracy with respect to the number of Mel filter banks can be found in 

Figure 4. It is worth noting that the accuracy is computed using all kernels with the 

grid search strategy, and only the best accuracy is selected to plot. 

 
Fig. 4. Accuracy with respect to selected filter banks 
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It can be seen from Figure 4 that when the filter banks are few (3-10 banks), the 

accuracy is low. When 20 Mel filter banks are utilized, the CV accuracy can reach a 

relatively high point, after which the accuracy becomes stable. In this paper, 25 filter 

banks are selected. Also, it can be seen that the “Polynomial” kernel can perform the 

best in the bridge damage detection problem, and the “Linear” kernel is the second 

winner. However, the “Polynomial” kernel owns four hyperparameters as shown in 

Table 1. Finding its best performance with grid search will cost much time. Therefore, 

the “Linear” kernel is selected for analysis in this paper.  

4.3 MFCCs-based logistic regression 

From the above analysis, we can see that the SVM model with a “Linear” kernel can 

identify the bridge’s condition with high accuracy. Thus, it can be inferred that in the 

high dimension space of MFCCs, the intact and damaged cases are linearly separable. 

Logistic regression, as a good linear classifier, is tested in this section. 

For the 𝑙2 regularization hyperparameter 𝐶, smaller 𝐶 means greater penalty on the 

logistic regression model’s weights. In this paper, 𝐶 = 1.0  is selected. When 25 

MFCCs are employed, the 5-fold CV accuracy of damage detection can reach 100 %. 

It means that the intact and damage cases can be linearly separately when MFCCs are 

utilized as damage indicators.   

4.4 Damage detection for different damage severity 

For multiple classification problems, there are two strategies: one vs. one (OVO) and 

one vs. rest (OVR). In this paper, OVR is adopted. 66 runs from intact cases are ran-

domly selected, and there are 199 runs together. The 5-folder CV result of logistic 

regression is 92.9%, and for SVM, the detection accuracy is 93.4%. It can be seen that 

both these two models can identify the bridge’s damage with relatively high accuracy. 

5 Conclusions 

In this paper, a method utilizing the passing vehicle’s vibration data to detect the 

bridge’s damage is proposed. MFCCs, initially used for acoustic recognition, were 

used to reduce the dimension of frequency responses. Then, two machine learning 

models, SVM and logistic regression, are employed to detect the bridge’s damage. 

The results show that when MFCCs are utilized, the training efficiency is greatly 

improved, and the accuracy of damage detection is high. The main conclusions are: 

(1) Both low and high frequency responses of the passing vehicle contain damage 

information of the bridge. With the increase of used frequency responses, the accura-

cy of damage detection using machine learning models increases; (2) Utilizing the 

extracted MFCCs from original vibration signals, dimensions of input for machine 

learning models can be reduced greatly, and the computational efficiency is improved 

accordingly.  
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