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Abstract. The research on vibration-based structural damage detection methods 

via supervised learning methods has achieved remarkable results in recent 

years. However, those methods have an obvious limitation, that the acceleration 

data collected from the target structure in its damaged states are indispensable 

for training machine learning models. Actually, it is very difficult, or even 

impossible, to acquire sufficient data from the damaged structure. This is also 

the reason why most of the publications only demonstrated the effectiveness of 

the vibration-based damage detection methods on numerical simulation datasets 

or real structures with simulated damage. Meanwhile, the vibration data 

generated by using finite element (FE) analysis are not suitable to be directly 

used as training data, because these data are unrealistic compared to the 

measurement data. To address this problem, we proposed a method to 

synthesize realistic vibration data. The method requests both the vibration data 

collected from the real structure and the simulated vibration data generated by 

FE analysis. Then an artificial neural network is trained to project the vibration 

data from the space of FE analysis to the space of real structure through 

supervised learning. To validate the proposed method, experiments were 

conducted on an I-shaped steel beam. The quality of synthetic vibration data by 

the proposed method is analyzed. The merits and the limitations of the proposed 

method are also discussed. 
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1 Introduction 

To address the safety problems caused by civil structures like bridges, buildings, 

tunnels, etc., various structural health monitoring (SHM) systems and structural 

damage detection (SDD) methods have been developed in recent decades. Typical 

SDD methods include but are not limited to image [1,2] and vibration [3,4]. Structural 

health states can be estimated by using these SDD methods to analyze the monitoring 
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data acquired from civil structures. These SDD methods show different and 

complementary advantages, making them suitable for different engineering scenarios. 

For instance, visual-based SDD methods are intuitive and highly deterministic, while 

the information and estimation are only limited to the visible areas of structures. On 

the contrary, vibration-based SDD methods can estimate both the invisible global and 

local health state of structures. Such a characteristic makes vibration-based SDD a 

prevalent topic in the civil engineering field. 

Traditional vibration-based SDD methods mainly focus on mining structural 

information from the frequency domain of vibration data, modal parameters of 

structures, and their variants. The performances of these methods are prone to be 

affected by environmental factors and measurement uncertainties [5]. In fact, it is 

impossible to decouple all the factors and uncertainties from vibration data, making it 

very challenging to detect small-scale or low level damage in actual engineering 

scenarios by using the traditional vibration-based SDD methods.  

With the advent of the artificial intelligence (AI) wave in 2015 [6], researchers 

were soon attracted by machine learning (ML) methods, which had shown high 

potential to solve complex problems. Complicated correlations between observation 

data and results can be accurately modeled by training ML models in a data-driven 

manner, with no requirement of domain knowledge. Considering the features of SHM 

and SDD problems, such as massive monitoring data, intricate factors and 

correlations, ML is very suitable to be adopted in SHM and SDD methods. Vibration 

data that include damage information can be directly used for training ML models, 

then the correlation between vibration data and the damage information can be 

automatically modeled. The article [7] indicates the effectiveness of using supervised 

ML models for vibration-based SDD. Very high accuracies were achieved in 

detecting the structural changes in actual structures.  

However, there is an obvious limitation when applying supervised learning 

methods for vibration-based SDD. Negative samples that represent the damage states 

of structures are indispensable for training. In other words, ML algorithms must learn 

real knowledge from the negatives samples before obtaining the ability of damage 

detection. Indeed, negative samples are very difficult to acquire. Many real structures 

are in an intact state with no damage, and artificial damage is generally not allowed to 

be induced. Meanwhile, because there are huge differences between structures, the 

vibration data of different structures normally cannot be used for training a universal 

SDD model. For similar reasons, simulated vibration data generated through finite 

element analysis (FEA) may have some differences from the measurement data due to 

idealized boundary conditions or other assumptions and cannot be used as training 

data directly in most cases. As a result, the problem of obtaining enough realistic 

negative samples must be solved for successfully training ML models that can detect 

actual structural damage. 

To address the above problem, as our first attempt, we proposed a method to 

synthesize realistic vibration data in this article. The proposed method combines 

vibration experiment, FEA, and neural network (NN). The vibration experiment and 

FEA are for generating one-to-one matched vibration data. NN is used to project the 

vibration data from the simulation space to the measurement space. The effectiveness 
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of the proposed method is discussed, and the quality of the synthetic data is also 

analyzed. The article is finalized with some conclusions, limitations, and future work. 

2 Methodology 

The proposed method for vibration data synthesis is illustrated in Fig. 1. Vibration 

experiment, FE simulation, and NN are incorporated in this method. Firstly, impulse 

loads are applied to the structure by using an instrumented electrical hammer. Both 

the impulse loads and the free damped vibrations of the structure are measured. A 

dataset of measurement data can be established by repeating the process. Secondly, a 

finite element (FE) model of the structure is created. The impulse loads recorded in 

the vibration experiment are input into the corresponding locations of the FE model 

respectively. The structural responses from the FE model are then computed through 

the time-history dynamic analyses data. Then a dataset of simulation data is built. As 

both the vibration tests and the FEA share identical input, the measurement data and 

the simulation data can be one-to-one matched. As a result, the two datasets are 

paired. Finally, a neural network is trained using the data pairs. The FE simulation 

dataset is used as input, and the measurement dataset is for the labels. The simulated 

vibration data can be projected to the measurement data space through the NN. 

 

  

Fig. 1. Architecture of the proposed method for vibration data synthesis 

Neural network is a classical data-driven modeling method. It can approximate 

correlations between two datasets through a training procedure, with no requirement 

of domain knowledge. The training process can be summarized into 3 steps. Firstly, 

training data are fed into the NN, and then corresponding predictions are obtained. 

Secondly, loss is calculated by comparing the predictions and the labels via a certain 

loss function, e.g., mean square error and cross entropy. Finally, the loss is minimized 

using gradient descant. When the loss of a neural network is relatively low, the 

training is accomplished.  
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3 Experiment  

3.1 Vibration experiment 

Fig. 2 shows the details of the vibration experiment. An I-shaped steel beam is simply 

supported at its two ends. The total length of the beam is 4.4 m, and the span length is 

4 m. In total 9 accelerometers are evenly distributed on the upper flange, named from 

Ch. 0 to Ch. 8. The sampling frequency is 2000 Hz, and the measurement time for 

each test is 2 s. As a result, each measurement data is a matrix with a shape of 4000 

data points × 10 channels. The first channel is the force of hammer impact, and the 

other 9 channels are the acceleration data. The experimental setup of the vibration test 

is shown in Fig. 3. The impact locations are in the middle of every two adjacent 

accelerometers. In total, the hammer impact loads are applied on 8 locations, termed 

from Loc. 0 to Loc. 7. The impact forces are generally in a range between 3 N and 11 

N. An example of the hammer impact force is shown in Fig. 4. Each impact triggers a 

measurement of the free damped vibration of the beam. The numbers of hammerings 

in all locations are summarized in Table 1. Over 140 times of impact were applied in 

each location. In total, 1277 free damped vibration data are acquired. Fig. 5 shows an 

example of the measurement data (Ch. 5 of the 14th data impacted at Loc. 0). 

 

Fig. 2.  Locations of sensors and hammer impacts 

    

Fig. 3.  Photo of the vibration experiment  Fig. 4. Example of hammer impact load 
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Table 1. Data distribution 

Impact 

location 

Number 

of data 

Impact 

location 

Number 

of data 

0 201 4 142 

1 218 5 143 

2 145 6 142 

3 143 7 143 

4 142 In total 1277 

 

 Fig. 5. Example of measurement data 

3.2 Simulation using finite element analysis 

To verify the proposed data synthesis method, a FE model of the steel beam is built. 

The 3-D beam element (B31) in Abaqus is utilized to simulate the beam’s vibration 

under a certain impulse excitation. The basic parameters of the FE model can be 

found in Table 2. The beam is divided into 22 elements, as shown in Fig. 5, and the 

length of each element is 0.20 m. There are 23 nodes in total, and each node has 6 

degrees of freedoms (DOFs). The beam is simply supported with span length of 4.0 m 

as shown in Fig. 2. The calculation of the beam’s vibration is based on the Mode 

Displacement Superposition method. The first 30 modes are selected for analysis, and 

Rayleigh damping is utilized with 𝛼 of 2×10-3 and 𝛽 of 5×10-5. 

Table 2. Basic parameters of the FE model 

Length Span length Young’s module Poisson Ratio Density 

4.4 m 4.0 m 210 GPa 0.3 7850 kg/m3 

 

To compute the simulated vibration data, the impact loads recorded from the vibration 

experiment are applied to the corresponding locations of the FE model. As a result, 

1277 simulation data are obtained to create the data pairs. Fig. 6 shows an example of 

the simulation data Ch. 5 of the 14th data with the excitation applied on Loc. 0. Com-

pared to the measurement data in Fig. 4, the simulated vibration data are damped in an 

over ideal way. 

   
Fig. 5. Finite element model of the beam Fig. 6. Example of FE simulation data 
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3.3 Neural network modeling 

The proposed NN is designed to transfer the vibration data from the simulation space 

to the measurement space. The structure of the NN is shown in Table 3. Five layers 

(including an input layer, a flatten layer, two dense layers, and a reshape layer) are 

stacked from the beginning to the end. The input shape and the output shape are 

identical to the simulation data (4000 points × 9 channels). Each of the two dense 

layers has over 64 million trainable parameters. In total, the NN has over 129 million 

trainable parameters. The training was performed on a computer with a Core i9 11900 

CPU and an NVIDIA GeForce RTX 3090 GPU. As the structure of the network is 

very simple, the large number of parameters does not affect the efficiency of training. 

The neural network is trained with 1149 data and validated with 128 data. The ratio of 

training data and validation data is 9 to 1.  

Table 3. Structure of the NN 

Layer Output shape Number of Parameters 

Input 4000×9 0 

Flatten 36000 0 

Dense 1 1800 64,801,800 

Dense 2 36000 64,836,000 

Reshape 4000×9 0 

In total - 129,637,800 

4 Results 

By performing the vibration experiment and the FE simulation, two matched vibration 

datasets are established. One is the measurement dataset, and the other is the FE 

simulation dataset. The natural frequencies of the 1st bending mode in the experiment 

and the FE simulation are 62.5 Hz and 80.5 Hz, respectively. We did not perform 

modal updating, because we intended to investigate whether the NN projection 

requests a high similarity between the FE simulation data and the measurement data. 

Fig. 7 compares the Ch. 4 of a paired FE simulation data and measurement data in the 

validation set. Clear differences in frequency and phase can be observed.  

 
Fig. 7. Comparison between the FE simulation data and measurement data 
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The NN was trained for 300 epochs, and the loss reduced smoothly, as shown in Fig. 

8. Very low training and validation loss were finally obtained, indicating the high 

performance of the NN.  

 
Fig. 8. Training history 

By using the NN to transfer the vibration data from the FE simulation data space to 

the measurement data space, the synthetic vibration data are obtained. A synthetic 

data from the validation set is visualized in Fig. 10. All the 9 channels of the synthetic 

data are compared to the measurement data respectively. The amplitude, phase, and 

frequency of the synthetic data almost perfectly match the measurement data. The 

root mean square errors of the 9 channels are in a range between 0.0036 to 0.0063. 

Such a small error indicates the high quality of the synthetic vibration data.  

5 Conclusions 

In this paper, we proposed a method to synthesize realistic vibration data by 

combining vibration experiment, FE simulation, and NN. The method transfers 

simulated vibration data to measurement vibration data via NN projection. Such an 

achievement can be used to address the problem of insufficient training data. Through 

the presented experiment, the feasibility of the method is fully demonstrated. All the 

frequency, phase, and magnitude of the synthetic data can accurately match the 

measurement data, representing the high quality of the synthetic vibration data.  

As this research is in its beginning phase, in this paper we only prove the concept 

by using the data acquired from an intact structure. Thus, whether the proposed 

method can accurately synthesize the vibration data that represents damaged 

structural cases is unknown. Further study will focus on this question and explore 

other scenarios to utilize the synthetic vibration data. 
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Fig. 10. Comparison between the synthetic and measurement data 
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