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Abstract: Recent decades have witnessed a rise in interest in bridge health monitoring utilizing
the vibrations of passing vehicles. However, existing studies commonly rely on constant speeds or
tuning vehicular parameters, making their methods challenging to be used in practical engineering
applications. Additionally, recent studies on the data-driven approach usually need labeled data for
damage scenarios. Still, getting these labels in engineering is difficult or even impractical because
the bridge is typically in a healthy state. This paper proposes a novel, damaged-label-free, machine-
learning-based, indirect bridge-health monitoring method named the assumption accuracy method
(A2M). Initially, the raw frequency responses of the vehicle are employed to train a classifier, and
K-folder cross-validation accuracy scores are then used to calculate a threshold to specify the bridge’s
health state. Compared to merely focusing on low-band frequency responses (0–50 Hz), utilizing
full-band vehicle responses can significantly improve the accuracy, meaning that the bridge’s dynamic
information exists in the higher frequency ranges and can contribute to detecting bridge damage.
However, raw frequency responses are generally in a high-dimensional space, and the number
of features is much greater than that of samples. To represent the frequency responses via latent
representations in a low-dimension space, appropriate dimension-reduction techniques are therefore,
needed. It was found that principal component analysis (PCA) and Mel-frequency cepstral coefficients
(MFCCs) are suitable for the aforementioned issue, and MFCCs are more damage-sensitive. When the
bridge is in a healthy condition, the accuracy values obtained using MFCCs are primarily dispersed
around 0.5, but following the occurrence of damage, they increased significantly to 0.89–1.0 in
this study.

Keywords: bridge health monitoring; damage detection; indirect method; dimension reduction

1. Introduction

Since the beginning of this century, bridge-health monitoring has been a concern due
to the rapid deterioration of civil infrastructures in several countries. It was reported that
in Europe, the majority of transportation bridges constructed after 1945 were planned for
a 50–100-year service life. The design laws in the previous century might not be suitable
for the increasing traffic loads nowadays [1]. As a result, monitoring a bridge’s health
condition and providing practical maintenance measurements are of great importance for
engineers [2–5]. As a key task in bridge-health monitoring, damage detection techniques in-
terest many researchers worldwide. The traditional method of inspecting bridge structures
entails visual monitoring by skilled engineers [6,7], which is often time-consuming and
even dangerous as bridge spans and heights increase. In addition, some common forms of
damage, such as internal cracks and corrosion, cannot be seen directly and can challenge the
monitoring results. Vibration-based approaches can offer fresh ideas to identify the bridge’s
damage in order to overcome these drawbacks [8–10]. Typically, for the vibration-based
methods, sensors are mounted to the bridge directly to collect the stream accelerations (say,

Materials 2023, 16, 1872. https://doi.org/10.3390/ma16051872 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16051872
https://doi.org/10.3390/ma16051872
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-1444-6017
https://orcid.org/0000-0002-8411-6507
https://orcid.org/0000-0001-8486-6538
https://doi.org/10.3390/ma16051872
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16051872?type=check_update&version=1


Materials 2023, 16, 1872 2 of 24

the direct method). The health of the bridge is then evaluated by examining its vibration
modes, which include natural frequencies, modal shapes, and damping ratios. However,
the direct method typically necessitates the installation of numerous sensors on the bridge
to create a sensing system, which is costly [11]. Additionally, installing sensors may cause
traffic pauses once the bridge is constructed, which could result in losses in revenue [12].

In 2004, Yang et al. [13] proposed to monitor the bridge’s modes using the pass-
ing vehicle’s vibrations, which was named the indirect method (also vehicle scanning
method or drive-by method). The indirect method is more cost-effective for monitoring
the bridge because it only requires a few sensors to be attached to moving vehicles. In
addition, it was discovered that the ongoing traffic helped to distinguish modes of the
bridge [14]. Therefore, when the indirect method is employed, no traffic pauses are re-
quired. Since the sensors are installed on the vehicle, it becomes easy to maintain the
sensors once faults are found. In the reference [13], the authors successfully identified
the bridge’s fundamental frequency using a mass-spring model, and later the idea was
verified by Lin and Yang in a field test [15] using a tractor-trailer system on Da-Wu-Lun
Bridge in Taiwan. Thereafter, identifying the bridge’s natural frequencies from the vehi-
cle’s accelerations was also investigated using numerical simulations [16–19], laboratory
experiments [20–22], and field tests [23–27]. Apart from the bridge’s frequencies, it was
found that modal shapes [28–33] and damping ratios [34–38] could also be extracted from
the passing vehicle’s vibrations. However, in current studies, the indirect method normally
depends on same driving traces, constant speed, and so on, which were challenging in
practical engineering. In addition, it was reported that the bridge’s modes were not quite
sensitive to damage [39]. New damage indicators are therefore required to identify the
bridge’s damage.

Due to the developments in computer science, machine learning (ML) techniques have
flourished in recent decades [40]. Researchers are attracted by their good properties, such
as requiring no field knowledge and having good learning capabilities. They have been
increasingly employed in bridge-health monitoring [41–44]. In recent years, researchers no-
ticed that the sound characteristics of ML techniques were suitable for the indirect method
when the vehicle’s vibrations were utilized. Cerda et al. (2014) [45] proposed to classify
healthy and different damage scenarios of the bridge using support vector machine (SVM)
models. The bridge’s damage was simulated by changes in the support conditions, an in-
crease in the damping, or a localized mass increase. Results showed that when the vehicle’s
vibrations were utilized, classification accuracy could be as good as or even better than the
accuracy when the bridge’s accelerations were directly used. Malekjafarian et al. (2019) [46]
employed artificial neural networks (ANNs) to identify the bridge’s damage. Two ways
were proposed using the vehicle’s time-domain and frequency-domain responses, respec-
tively. It was reported that the occurrence of damage could be identified, and the reference
to damage severity was also provided. Furthermore, to improve the proposed method,
Corbally and Malekjafarian (2021) [47] utilized the contact-point (CP) frequency responses
to feed ANNs. It was found that CP responses were superior to accelerations when iden-
tifying the bridge’s damage. The proposed method was tested robustly with different
vehicle speeds, ambient temperatures, and road roughness levels. Locke et al. (2020) [48]
presented a study to predict bridge damage severity directly from the frequency responses
of a passing vehicle using convolutional neural networks (CNNs). The results indicated
that the proposed model could automatically discard some complicating factors, such as
different climates, temperatures, and damage patterns, and was able to predict the bridge’s
damage correctly. Feng et al. (2021) [49] proposed a damage detection method based on
the k-nearest neighbors (KNN) algorithm that employs instantaneous forced frequencies to
localize and quantify the bridge’s damage. It was found that the damage’s degree and posi-
tion could be identified in optimal cases, but the precision was relatively low near supports.
Hajializadeh (2022) [50,51] proposed a transfer learning-based drive-by bridge monitoring
framework. The weights were adopted from a pre-trained CNN entitled GoogLeNet, and
the raw train-borne accelerations were used as damage-sensitive features. Remarkable
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accuracy was obtained when 30% of the dataset (including healthy and damaged cases) was
utilized for testing. However, in current studies, the damage detection methods generally
require labels indicating damage to the bridge. In practical engineering, the bridge will
mostly be in a healthy state; obtaining labeled vehicle vibration data for damaged bridges
is often difficult or cannot be achieved. To respond to this challenge, some researchers pro-
posed using unsupervised methods to extract damage-sensitive features from the vehicle’s
vibrations. For instance, using the k-means, Yang et al. [52] automated the bridge frequency
identification process in the frequency domain. Sarwar and Cantero [53] adopted the deep
autoencoder (DAE) to extract the mean absolute error (MAE) values for damage indicators
from the vehicle’s time-domain accelerations. Results showed that the damage could be
identified, and its severity could be reorganized from the distribution of reconstruction er-
rors. Even though the unsupervised method can get good results, it usually requires a large
number of “healthy” cases to learn their features, which may challenge their applications
in engineering.

A machine learning-based indirect bridge-health-monitoring method named the as-
sumption accuracy method (A2M),is proposed in this paper. It does not require data when
the bridge is damaged and thus is more practical in engineering applications. Apart from
detecting damage, this paper also discusses accuracy values when the bridge is healthy,
and the threshold is provided for determining the bridge’s healthy condition. To improve
the detection efficiency and precision, the vehicle’s raw frequency responses are mapped
into low spaces, and different dimension reduction techniques are explored. The robust-
ness of the proposed method was tested by various damage scenarios with various types
of vehicles and bridges. The remainder of this paper is organized as follows: Section 2
introduces the theoretical foundation of the proposed method. The laboratory setups and
artificial damage cases are provided in Section 3. Section 4 explores damage-detection
results using raw frequency responses and the capabilities of different dimension reduction
techniques. Finally, conclusions and future work of this paper are provided in Section 5.

2. Theories for Damage Detection

In current studies of the indirect method, typically only low-frequency responses
(0–50 Hz) are investigated—for example, extracting the bridge’s natural frequencies from
the vehicle’s vibrations. However, on the one hand, engineering applications may fail since
the identification of the bridge’s dynamic properties rely on the vehicle models [16,54,55].
On the other hand, in the vehicle’s frequency-domain responses, not only the low-frequency
responses (0–50 Hz) but the frequency responses in the higher range (>50 Hz) contain the
bridge’s damage-sensitive information [56], which is generally ignored by researchers. This
paper investigates the full-band frequency responses and analyzes different dimension-
reduction techniques (DRTs) to quickly determine the bridge’s health state by employing
the vehicle’s vibrations. The classifier we selected is the logistic regression (LR) algorithm,
and five DRTs were explored. They were principal component analysis (PCA), uniform
manifold approximation and projection (UMAP), multidimensional scaling (MDS), stacked
autoencoder (SAE), and mel frequency cepstral coefficients (MFCCs). Figure 1 shows
the schematic workflow of the proposed damage detection framework. There are five
steps: (1) original acceleration collection, (2) transform signals into the frequency domain,
(3) latent representation, (4) binary classification, and (5) damage detection by A2M. All
steps are introduced in detail below.
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Figure 1. Schematic workflow of the proposed method.

2.1. Acceleration Collection

In this study, accelerometers were attached to the vehicle’s front and rear axles, and
its vertical accelerations were collected when passing the beam. Only the accelerations
measured after the entire vehicle was on the bridge were used for analysis, in order to
minimize irrelevant signals. Suppose that the front and rear wheels of the vehicle enter the
bridge at t f 0 and tr0, and they leave the bridge at t f 1 and tr1. Then, the signals between tr0
and t f 1 are employed, which can be represented by Equation (1):

∆tp = t f 1 − tr0 (1)

where ∆tp means the vehicle’s passing time when its double axles are both on the bridge.
The bridge is assumed to be in good condition at initial time T0 (early stages after construc-
tion). The vehicle is expected to make multiple trips across the bridge (named N0 runs). In
order to include as many influence factors as possible during this time, the vehicle may
run at slightly varying speeds and road traces on the bridge. These data will be labeled
as “healthy”. At the time Ti (may be months or years after T0), the same vehicle needs to
pass the bridge again, Ni times. Ni is expected to be equal to N0 and greater than 50 for
training the classifier. However, if Ni < N0, Ni runs need to be randomly selected from the
N0 “healthy” runs for the later binary classification. Alternatively, the random selection
will be carried out in Ni runs if Ni > N0. The primary goals of the aforesaid procedure
are to (1) avoid data imbalance while performing binary classification and (2) lessen the
impacts of non-damage factors on the detection results.

2.2. Signal Transformation

After the accelerations at different times T0 and Ti are collected, they will be trans-
formed to frequency signals using fast Fourier transformation (FFT) to obtain the vehicle’s
frequency responses. The Hann window is used during this process to avoid the spectrum
leakage phenomenon. The lengths of different serials of signals differ, since the vehicle’s
passing speeds vary regardless of time T0 or Ti. As a result, every run will have a different
frequency resolution in the frequency domain. To adjust this, time-domain signals are
followed by padding zeros to ensure that all data serials are the same length. Then, the
lengths of the padded signals represented in the frequency domain will be equal. The
padding zero techniques will increase FFT resolution in the frequency domain without
affecting the dynamic information of the original signals. Following the collection of the
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vehicle’s frequency responses, a classifier can be fed with the responses at each frequency
point to determine the health state of the bridge.

2.3. Dimension Reduction

Raw frequency responses from Section 2.2 are acceptable for damage detection di-
rectly. However, huge amounts of features sharply lower detection efficiency. Additionally,
ambient noises can play a negative role in damage detection. To address this, the capabil-
ities of five DRTs in extracting key information from original responses are explored, as
introduced below.

One of the most popular DRTs is the PCA [57], which maps n-dimension data into
k principal components while maintaining important information. Correlated variables can
be eliminated by PCA, making representations clear and independent for decision making.

Another two nonlinear dimension reduction methods are UMAP and MDS [58,59].
UMAP has better preservation of the global structure, more understandable parameters,
and superior run-time performance than PCA. For MDS, it uses geometric coordinates to
determine the distances between each pair of points. It is a suitable method for preserving
high-dimensional data’s global and local structures.

SAE stems from unsupervised deep learning [60], which compresses the input into
latent representations in the autoencoder’s bottleneck. It is not constrained to optimize
a convex objective function and has many degrees of freedom [56].

The idea behind MFCCs came from acoustic recognition and was first intended to
mimic how the human ear works [61]. The key advantage of MFCCs is the concentration
on the low-frequency ranges when it comes to SHM rather than the high-frequency band,
where signals may be poorly noised. The modified relationship between Hertz and Mel
frequency scale is indicated in Equation (2) [62]:

fHertz = 5(e fMel/5 − 1) (2)

where fHertz is the Hertz-scale frequency and fMel is the Mel-scale frequency. Figure 2a
depicts the modified relationship between Hertz- and Mel-scale frequencies. The dimen-
sionality of the raw frequency responses can be decreased by using different numbers of
Mel filter banks. Figure 2b shows a visualization of 15 Mel filter banks in the 0–1 kHz range.
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Figure 2. Relationship between modified Mel- and Hertz-scale frequencies and illustration of Mel
filter banks.

2.4. Binary Classification

After the original accelerations are preprocessed and denoted by latent representation
using different DRTs, dataset 0 and dataset i at different times (shown in Figure 1) are
expected to be fed into a classifier. Then, the classifier will learn the two datasets’ features
and try its best to determine the bridge’s healthy state. In this paper, the LR is employed
for binary classification. Figure 3 plots the basic concept of LR.

In Figure 3, the features x = {x1, x2, . . . , xn} denote the latent representation of the
vehicle’s frequency responses. w = {w1, w2, . . . , wn} are the weights of all features. σ is the
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activation function, and it is a sigmoid function for binary classification problems. After
activation, the output ŷ can be obtained. If ŷ > 0.5, the datapoint (one run at time T0 or Ti)
will be determined as class 1, and otherwise class 0. Classes are pre-allocated to datasets.
At the initial time, T0, N0 runs are labeled as class 0, and Ni runs at a later time Ti will be
labeled as class 1.

x1

x2

x3

xi

xn

wn

wi

w
3

w
2

w

o

Sigmoid function

1

Figure 3. Illustration of logistic regression.

2.5. Damage Detection

In the above four steps, if the bridge is damaged, the accuracy of binary classification
is expected to be relatively high. However, in practice engineering, the dataset clearly
stating that the bridge is damaged cannot be obtained. At time Ti, when the dataset i is
obtained, we cannot know the bridge’s condition, so it cannot be labeled as damaged.

To solve the above problem, the A2M method is proposed in this paper. When a new
dataset, e.g., dataset i, is obtained, all Ni runs will be assumed as damaged (the bridge
may not be damaged indeed), namely, class 1 for binary classification. Then, the binary
classification accuracy will be checked, and as references for determination of the occurrence
of damage in the bridge. Once the bridge is damaged, the classification accuracy is expected
to be high (close to 1.0) because the bridge’s dynamic information related to the damage is
contained in the vehicle’s vibrations. However, if the bridge remains in good condition, the
accuracy will become low (near 0.5), since no bridge damage information can be detected
from the vehicle’s vibrations. When applying the proposed A2M method, the following
points need to be noted:

1. At the initial time when the bridge is in a healthy state, the vehicle is expected to
run over the bridge numerous times to collect enough data, representing that the
bridge is in its healthy condition. During this period, the influence factors need to be
included as much as possible, such as different environmental noises, driving traces,
and vehicle speeds.

2. When doing binary classification, the samples of classes 0 and 1 need to be nearly
equal to avoid data imbalance problems, as discussed in Section 2.1.

3. To calculate the classification accuracy, k-folder cross-validation (CV) is expected
to be used, rather than just one-time validation. As in the CV process, the whole
dataset (including dataset 0 and i) is randomly divided into k sections. This k-folder
CV process needs to be executed many times to avoid possible occasional high or
low accuracy.

4. The classifier cannot be an extremely strong one because these strong classifiers
can identify the minor differences between two datasets, even if the bridge is in its
“healthy” state all the time. The differences these classifiers find may be irrelevant to
damage, and simply noisy features. It is shown that in high-dimensional space, the
vehicle’s frequency responses are linearly separable [45]; thus, some linear classifiers,
such as the support vector machine (SVM) with a linear kernel, and weak classifiers
such as naive Bayes (NB), k-nearest neighborhood (KNN), and decision tree (DT)
without boosting techniques are recommended.
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3. Experiments

In this section, the experimental vehicle bridge interaction (VBI) setups are introduced.
To verify the proposed idea, the vehicle was simulated by a scaled truck with different
weights and two kinds of beams, simply supported beam (SSB) and continuously supported
beam (CSB), were employed. The following provides a detailed description of the vehicle
and bridge models.

3.1. Vehicle Bridge Interaction Models
3.1.1. Vehicle Models

The vehicle used in the experiment was a carefully scaled truck model, as shown
in Figure 4a. The type of truck model was the Tamiya Mercedes-Benz 1850L. Tamiya is
a Japanese manufacturer that is famous due to its accurate scaled details of all vehicle
components. The scale ratio of this truck is 1:14. The normal truck’s mass is 4.305 kg
(named v0). To simulate a heavy vehicle, an additional 5.157 kg mass was added to the
truck’s trunk (named v5). The guide-wire system was employed to keep the truck running
on a relatively straight trace and to not hit the flange of the beam. However, the wire was
not extremely tight because a tight wire would limit the vibrations of the vehicle. Due to
the loose wire used, the truck’s passing traces may not be exactly the same when it passes
the beam many times.

The scaled truck’s bottom view is shown in Figure 4b. We can see that the truck has
a scaled suspension system, engine, connecting shaft, etc. It can be driven by a 540-brushed
electric motor powered by a Tamiya Ni-MH 7.2 V–3000 mAh battery. The engine’s noises
can have a great influence on acceleration collection, which is similarly unavoidable in
practical engineering. Two accelerometers, made by Brüel & Kjær (type 4371), are attached
to the vehicle’s front and rear axles, as shown in Figure 4b. The vehicle can be controlled
by the remote controller shown in Figure 4c. Due to the battery’s capability, the vehicle’s
speed varies slightly for different runs.

(a) Scaled truck (b) Bottom view of the truck (c) Remote controller

Figure 4. Vehicle model.

3.1.2. Bridge Models

For the bridge, two models, SSB and CSB, were employed in the experiment. The basic
parameters of the two beams are listed in Table 1. Two beams in the laboratory are shown
in Figure 5, and their layouts can be found in Figure 6. To drive the truck at a relatively
constant speed when passing the beams, acceleration and deceleration runways were uti-
lized at their ends. Positions of the accelerometer on the SSB and CSB models can be found
in Figure 6, and they were attached to the bottoms of the beams. An impact hammer was
employed to impact the beam exactly on the other side of the beam’s web. The impact forces
are shown in Figures 7a and 8a for two beam models, and the beams’ acceleration responses
can be found in Figures 7b and 8b. By utilizing the FFT, we can get the natural frequencies
of the two beam models, as shown in Figures 7c and 8c. We can see that the SSB model’s first
two frequencies were 35.28 and 110.63 Hz, and the same parameters of the CSB model were
30.75 and 42.53 Hz. Using the above vehicle and bridge models, we could obtain the
following four scenarios:



Materials 2023, 16, 1872 8 of 24

(1) Scenario 1: SSB model + normal vehicle (v0).
(2) Scenario 2: SSB model + heavy vehicle (v5).
(3) Scenario 3: CSB model + normal vehicle (v0).
(4) Scenario 4: CSB model + heavy vehicle (v5).

Table 1. Bridge model parameters.

Model Type Cross-Section
Area/m2

Support
Length/m

Span
Length/m Mass/kg

SSB HEA 400 1.59× 10−2 0.20 4.0 550.00
CSB UPE 300 5.66× 10−3 0.15 5.7 248.64

(a) Simply supported beam (SSB) (b) Continuously supported beam (CSB)

Figure 5. Bridge models.
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The vehicle’s mass is usually less than 5% of the bridge [12,63]. In this experiment,
the ratios for the SSB model were 0.78% (v0) and 1.72% (v5), and for the CSB model, they
were 1.73% (v0) and 3.81% (v5). Those ratios are reasonable for simulating a practical VBI
system. The vehicle’s speed is plotted in Figure 9 for different scenarios. It can be seen
that the scaled truck’s speed was between 0.85 and 1.1 m/s. When the extra mass was
added to the vehicle, its speed’s mean value became slightly slow compared to the normal
truck. Since the vehicle’s high-frequency responses were also investigated in this study, the
sampling frequency for the vehicle and beams was set to 10 kHz, which is much higher
than normally used ones. The experiment was accomplished in the structural laboratory at
Aalto University with normal environmental noises.

0.5

0.7

0.9

1.1

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Different vehicles and beams

S
pe

ed
 (

m
/s

)

Figure 9. Speed distribution.

3.2. Damage Cases

Bridge damage can typically be simulated by local stiffness loss, which will induce
a decrease in the structural natural frequencies. By achieving similar results for the bridge’s
frequency responses, a practical way to simulate the bridge’s damage is to attach additional
mass to it [45,56,64,65]. Since the bridge’s natural frequencies are negatively related to
its mass matrix, once the mass increases, its frequencies will decrease, causing similar
effects to the occurrence of damage. As this study was meant to investigate the bridge’s
dynamic information included in the vehicle’s vibrations, and frequency responses were
utilized as damage-sensitive features, the additional mass method was able to be utilized
for simulating the bridge’s damage. An illustration of adding a 20 kg mass to the simply
supported beam is shown in Figure 10.
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Figure 10. Adding a 20 kg mass to the SSB model.

Table 2 shows all cases in the experiment when the bridge was healthy or had artificial
damages. We simulated several different damage cases for both SSB and CSB models. After
the different masses were added to the bridge models, the bridge’s modal parameters were
changed. The bridge’s fundamental frequency could be identified using the accelerometer
attached to the bridge (direct method), as shown in Figure 6. The bridge models’ funda-
mental frequencies in different cases are listed in Table 3. It can be seen that compared to
the intact bridges, the fundamental frequency of a bridge with added mass decreasd by
0.74% to 15.64%.

Table 2. Cases in the experiment.

VBI Model Scenario 1: SSB+v0 Runs Scenario 2: SSB+v5 Runs

Runs on healthy bridge Case s00∗1 (healthy) 568 Case s50 (healthy) 562

Runs on damaged bridge
Case s01 (0.3 L∗3: 15 kg, 0.6 L: 4 kg) 66

Case s51 (0.3 L: 15 kg,
0.6 L: 4 kg) 66

Case s02 (0.4 L: 20 kg) 79 Case s52 (0.4 L: 20 kg) 66
Case s03 (0.5 L: 2 kg) 66 Case s53 (0.5 L: 2 kg) 67

VBI model Scenario 3: CSB+v0 Runs Scenario 4: CSB+v5 Runs
Runs on healthy bridge Case c00 (healthy) 565 Case c50 (healthy) 506

Runs on damaged bridge

Case c01 (0.3 LL∗4: 10 kg, 0.3 RL:
20 kg) 56

Case c51∗2 (0.3 LL: 10
kg, 0.3 RL: 20 kg) 51

Case c02 (0.3 RL∗4: 30 kg) 58
Case c52 (0.3 RL:
30 kg) 48

Case c03 (0.5 LL: 5 kg) 56 Case c53 (0.5 LL: 5 kg) 51

Case c04 (0.5 LL: 10 kg, 0.5 RL: 20 kg) 58
Case c54 (0.5 LL:
10 kg, 0.5 RL: 20 kg) 50

*1 Case s00: s→ SSB, 0→ v0, 0→ healthy case; *2 Case c51: c→ CSB, 5→ v5, 1→ damage case 1; *3 L: the span
of SSB; 0.3L: the mass is attached to the position of 1/3 span; *4 LL: CSB’s left span; RL: CSB’s right span; 0.3LL:
the mass is attached to the position of 1/3 CSB’s left span.

Table 3. Influence of added mass on the fundamental frequency.

Cases fSSB,1 (Frequency
Decrease Ratio) Cases fCSB,1 (Frequency

Decrease Ratio)

Case s00 (Case s50) 35.28 Hz Case c00 (Case c50) 30.75 Hz
Case s01 (Case s51) 34.56 Hz (2.04%) Case c01 (Case c51) 27.01 Hz (12.16%)
Case s02 (Case s52) 34.26 Hz (2.89%) Case c02 (Case c52) 26.55 Hz (13.66%)
Case s03 (Case s53) 35.02 Hz (0.74%) Case c03 (Case c53) 28.84 Hz (6.21%)
– – Case c04 (Case c54) 25.94 Hz (15.64%)

As the objective of this study was to detect the occurrence of damage using a classifier,
all damage cases with different damage positions or degrees can be uniformly regarded as
“damaged”, and they are named SC3 (or CC3), where the first “S” means SSB (the first “C”
in CC3 means CSB). However, in practice, we do not know whether the bridge is damaged
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or not in advance. To suit the A2M and avoid the data imbalance problem, half of the
“healthy” runs were assumed as “damaged”, and they were named SC2 (or CC2). Here is an
example of scenario 1. There were 568 runs when the bridge was healthy, and half of them
(284 runs) were randomly selected as SC1, and the other half (284 runs) were assumed as
damaged and named SC2. Then, the classifier was utilized to do a binary classification and
get the accuracy using raw frequency responses or latent representations. For SC3, there
were 66 + 79 + 66 = 211 runs. Then, 211 runs were randomly selected from all 568 “healthy”
runs as SC1. Thus, we can see that runs in SC1 can be different for different problems. The
number depends on how many runs we will measure in a future time, namely, at time Ti,
as introduced in Section 2.1. To summarize, for different scenarios, the binary classification
problems are:

• Scenario 1: SC1 vs. SC2 (the bridge remains healthy), and SC1 vs. SC3 (the bridge
is damaged).

• Scenario 2: SC1 vs. SC2 (the bridge remains healthy), and SC1 vs. SC3 (the bridge
is damaged).

• Scenario 3: CC1 vs. CC2 (the bridge remains healthy), and CC1 vs. CC3 (the bridge
is damaged).

• Scenario 4: CC1 vs. CC2 (the bridge remains healthy), and CC1 vs. CC3 (the bridge
is damaged).

4. Results and Discussion

In this section, the experimental results are discussed in regard to the introduced
experimental devices, vehicle, and bridge models. Firstly, the vehicle’s frequency responses
are visualized in a low-frequency range (0–50 Hz). Then, the raw full-band frequency
responses are explored using the LR classifier. The LR model in the scikit-learn package [66]
was used with a penalty term of l2 : C = 1.0, where C is a hyper-parameter controlling
how strong the penalty term is. Smaller values specify stronger regularization. In this
study, the authors tested the hyper-parameter C, and its selection has a small effect on the
classification accuracy.

4.1. Damage Detection Using Frequency Responses

Figure 11 has the vehicle’s frequency responses in 0–50 Hz. It can be seen that for
different beams and vehicles, the bridge’s fundamental frequency is polluted in the vehicle’s
frequency responses when the bridge is healthy (blue lines). Additionally, we can see that
even when the bridge’s damaged (red lines), we cannot determine the bridge’s condition
visually, as no peaks show the bridge’s fundamental frequency. Therefore, damage detection
with prior knowledge in a low-frequency range is not achievable.

Due to the above issues, a machine learning classifier was employed to detect the
bridge’s damage using raw frequency responses. The advantage of machine learning is
that it can detect damage-sensitive features automatically. It can detect minor changes in
the vehicle’s responses before and after the bridge is damaged [64]. This section shows
the binary classification results when the raw frequency responses are used, which means
step 3 is not executed in Figure 1. Different vehicles and beams were utilized, and the
accuracies of LR models with increasing features (frequency responses) are plotted in
Figure 12 (frequencies greater than 0–1500 Hz are not plotted because more features will
not improve classification accuracy). In Figure 12, green and red dots mean accuracy values
in relation to the frequency-response range. The black lines are smoothed curves using the
LOESS (locally estimated scatterplot smoothing) method, and the color bands around them
are 95% confidence intervals.
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(a) Vehicle’s frequency responses using SSB
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Figure 11. Vehicle’s frequency responses at 0–50 Hz.
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Figure 12. Classification accuracy with different frequency ranges.
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It can be seen in Figure 12 that for the SSB model, when the selected frequency range
increases, the classification accuracy of SC1 vs. SC3 increases (>0.8), but the results of SC1
vs. SC2 always show relatively low accuracy—e.g., around 0.6 for scenario 1 and 0.7 for
scenario 2. We can see that when the bridge is healthy, the accuracy is not always near
0.5. This is because the vehicle’s signals are strongly influenced by multiple factors, such
as the engine, environmental noises, and passing traces. When the classifier attempts to
classify two classes (healthy and damaged bridges), it may detect other influence factors
present in the frequency domain, resulting in higher accuracy. Despite the classification
being influenced by other factors, it is clear that the bridge’s deterioration is a crucial factor
that can result in more accuracy than when the bridge is healthy. Distinct divergence can
be observed in Figure 12 for when the bridge is healthy or damaged. Similarly, for the
CSB model, we can see that when the bridge is damaged (CC1 vs. CC3), the accuracy can
be higher than 0.9. When the bridge is still healthy (CC1 vs. CC2), the accuracy will be
lower than 0.9. Additionally, we can see that when a heavy vehicle (v5) was utilized, the
accuracy of the classification was higher than when the normal vehicle (v0) was used. Thus,
a heavier car is recommended for damage detection of indirect bridge-health monitoring in
practical engineering.

To determine the threshold for damage detection for general cases in engineering, the
5% and 95% quantiles calculated for all scenarios are shown in Table 4. It can be seen that
even when the bridge is in its healthy state, the accuracy can reach 0.74. This is because
when the raw frequency responses are utilized, the accuracy is prone to be affected by
influence factors. For example, when two groups in the "healthy" runs are selected, it is easy
to group them with different influence factors, such as passing traces, speeds, and noises. At
this time, the machine learning classifier can regard these factors as damage indicators and
thus make high accuracy values. Additionally, when frequency responses are utilized, the
classification capability can decrease because the number of features is much greater than
that of samples (runs). Thus, if the raw frequency responses are utilized, the authors would
recommend collecting as many "healthy" data as possible to weaken the inverse effects of
influence factors. Notwithstanding, even if when the bridge is healthy, high accuracy can
be obtained, it can be noticed that if the bridge is damaged, the accuracy will become higher.
A clear gap between the accuracy values is noticed. Thus, due to this characteristic of the
accuracy values, a threshold can be selected to determine the bridge’s healthy condition.
To select a good threshold ks, we expect that when the bridge is healthy, 95% accuracy
values are less than ks, and when the bridge is damaged, 95% accuracy values are greater
than ks. It can been determined that ks = 0.84 satisfies both the SSB and CSB models.
Nonetheless, the above study employing raw frequency responses are in a space with high
dimensions. For example, when frequency responses between 0 and 500 Hz are selected,
the classification accuracy becomes steady. However, employing frequency responses in
the range of 0–500 Hz results in 6553 features, which poses a challenge for the classifier
and necessitates more CPU resources for calculating the classification results. Thus, before
using the proposed method in engineering, it is necessary to find ways to reduce the input
dimensions of the classifier. In the subsequent sections, various DRTs are studied based
on the specified threshold ks. An effective DRT needs to keep this characteristic when
determining the bridge’s healthy conditions.
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Table 4. Determination of threshold of accuracy values using raw frequency responses.

VBI model
Scenario 1: SSB+v0 Scenario 2: SSB+v5

SC1 vs. SC2 SC1 vs. SC3 SC1 vs. SC2 SC1 vs. SC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.55 0.64 0.86 0.94 0.65 0.73 0.84 0.89

VBI model
Scenario 3: CSB+v0 Scenario 4: CSB+v5

CC1 vs. CC2 CC1 vs. CC3 CC1 vs. CC2 CC1 vs. CC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.74 0.83 0.92 0.96 0.74 0.83 0.91 0.98

4.2. Damage Detection Using Different DRTs

In this part, a few of the DRTs are investigated. These techniques are used to reduce
the dimensions of raw frequency responses. The frequency range used in this study was
0–5000 Hz. As the vehicle’s speed varies between runs, the length of each signal also differs.
To accelerate the processing performance of FFT and to align the frequency responses of
the vehicle, time-domain signals were padded with zeros, and their lengths were set to
217 = 131, 072. In the frequency domain, the frequency resolution was 0.0763 Hz, and there
were 65,537 frequency points. Different DRTs were used to reduce all 65,537 features to
1–200 dimension spaces. Using the LR classifier, the accuracies of SC1 vs. SC2 and SC1
vs. SC3 (or CC1 vs. CC2 and CC1 vs. CC3) were calculated. As dividing the dataset
into different folders is random in the CV process, it is carried out ten times to avoid
occasional accuracy.

4.2.1. Damage Detection Using PCA

After the PCA technique is employed, the classification accuracy values when the
vehicle’s frequency responses are reduced to 1–200 latent representations are shown in
Figure 13(a4,b4). We can see that when the bridge stays in a healthy state, the accuracy
values are lower than 0.8. However, after the bridge is damaged, the accuracy increases a lot.
Additionally, we can see that once the heavy vehicle is employed, the accuracy values are
higher when the bridge is damaged. Similar results are obtained when the raw frequency
responses are utilized, as discussed in Section 4.1. After the CV process was executed ten
times, the joint distributions of accuracy values were plotted in Figure 13(a1,b1). From the
marginal distribution of accuracy values shown in Figure 13(a2,a3,b2,b3), we can see that
for SC1 vs. SC2 or CC1 vs. CC2, the distribution range is large. However, if there is true
damage on the bridge (SC1 vs. SC3 or CC1 vs. CC3), the distribution of accuracy values
should become thinner. To test the threshold, quantiles were calculated for Table 5. It can
be seen that 0.84 can be used to determine the bridge’s healthy condition. However, it was
found that PCA is sensitive to the number of training samples. When the samples (runs)
are limited (less than 50), even if the bridge is damaged, the classifier may not be able to
learn features using principal components in a small space [67]. Thus, when the PCA is
employed, the authors would suggest collecting as many samples as possible (e.g., more
than 200 runs for each scenario).



Materials 2023, 16, 1872 15 of 24

(a) Classification accuracy values using the SSB model (b) Classification accuracy values using the CSB model

Figure 13. Classification accuracy values using PCA.

Table 5. Quantiles of accuracy values using PCA.

VBI model
Scenario 1: SSB+v0 Scenario 2: SSB+v5

SC1 vs. SC2 SC1 vs. SC3 SC1 vs. SC2 SC1 vs. SC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.52 0.61 0.89 0.95 0.56 0.69 0.91 0.96

VBI model
Scenario 3: CSB+v0 Scenario 4: CSB+v5

CC1 vs. CC2 CC1 vs. CC3 CC1 vs. CC2 CC1 vs. CC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.67 0.76 0.93 0.97 0.51 0.66 0.95 0.99

4.2.2. Damage Detection Using UMAP

Figure 14 depicts the damage-detection results for the SSB and CSB models when
UMAP is utilized. Figure 14(a4,b4) demonstrate that as the dimensions are increased from
1 to 200, the curves of accuracy values for the two beam models are approximate horizontal
lines. Additionally, it can be seen that if the bridge is in its healthy state for the SSB model,
the accuracy is mainly distributed around 0.6 (see Figure 14(a3)). If there is damage in the
bridge, the accuracy stabilizes at near 0.8 (see Figure 14(a2)). Vehicle mass has no apparent
effects on damage-detection results. For the CSB model, the occurrence of damage can
increase the classification accuracy from 0.5–0.7 to 0.6–0.8. However, even though the
accuracy is improved, it cannot meet the threshold ks = 0.84 determined by raw frequency
responses. The quantiles of damage detection accuracy values are shown in Table 6. It can
be seen that for neither the SSB nor the CSB model, when the bridge is damaged, the 5%
quantiles can reach the threshold. Thus, under this condition, UMAP cannot be used to
reduce the input dimensions and further determine the bridge’s health condition using the
vehicle’s vibrations.
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(a) Classification accuracy values using the SSB model (b) Classification accuracy values using the CSB model

Figure 14. Classification accuracy values using UMAP.

Table 6. Quantiles of accuracy values using UMAP.

VBI model
Scenario 1: SSB+v0 Scenario 2: SSB+v5

SC1 vs. SC2 SC1 vs. SC3 SC1 vs. SC2 SC1 vs. SC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.57 0.62 0.82 0.89 0.58 0.67 0.75 0.86

VBI model
Scenario 3: CSB+v0 Scenario 4: CSB+v5

CC1 vs. CC2 CC1 vs. CC3 CC1 vs. CC2 CC1 vs. CC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.56 0.65 0.59 0.72 0.53 0.60 0.74 0.84

4.2.3. Damage Detection Using MDS

The results of damage detection using MDS can be found in Figure 15 for the SSB
and CSB models. From Figure 15(a4,b4), we can see that when the used dimensions
increase, the accuracy for most scenarios is approximately unchanged, meaning that the
MDS does not depend on the number of dimensions used. In Figure 15(a3), when the
SSB model is employed, we can see that the vehicle’s weight has little influence when the
bridge is healthy. The classification accuracy was distributed around 0.6. If the bridge was
damaged, it can be seen in Figure 15(a2) that nearly all accuracy values were greater than
0.8. For the heavy vehicle, the accuracy could reach 1.0 sometimes. For the CSB model,
similar results could be observed when the bridge was healthy. The accuracy was mainly
distributed between 0.4 and 0.6, and the vehicle’s weight influences accuracy values little.
Notwithstanding, when damage occurred in the CSB model, different vehicles could have
a great impact on the damage-detection results. We can see that when the vehicle was light
(v0), the accuracy decreased to be smaller than 0.8, whereas in the scenario when the heavy
vehicle (v5) was utilized, the accuracy could stay relatively high (0.8–1.0). To clearly explore
the results when MDS was utilized, we listed all quantiles of accuracy values in Table 7.
It can be seen that only when the heavy vehicle and SSB model were utilized, could the
accuracy results meet the requirement mentioned in Section 4.1. Therefore, using MDS to
determine the bridge’s condition depends on different scenarios when different vehicles or
types of bridges are employed. Its universality cannot be ensured, and thus is not suitable
for practical engineering when more factors are considered.



Materials 2023, 16, 1872 17 of 24

(a) Classification accuracy values using the SSB model (b) Classification accuracy values using the CSB model

Figure 15. Classification accuracy values using MDS.

Table 7. Quantiles of accuracy values using MDS.

VBI model
Scenario 1: SSB+v0 Scenario 2: SSB+v5

SC1 vs. SC2 SC1 vs. SC3 SC1 vs. SC2 SC1 vs. SC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.54 0.62 0.80 0.88 0.54 0.67 0.86 0.96

VBI model
Scenario 3: CSB+v0 Scenario 4: CSB+v5

CC1 vs. CC2 CC1 vs. CC3 CC1 vs. CC2 CC1 vs. CC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.47 0.58 0.63 0.73 0.45 0.56 0.82 0.92

4.2.4. Damage Detection Using SAE

SAE is an unsupervised deep learning method, typically used to rebuild the input and
keep the most crucial input information in the latent state (bottleneck). Commonly, the
latent representations of the input in the bottleneck in a low-dimension space will be utilized
to achieve dimension reduction. Before the SAE model is employed, its hyperparameters
must be determined. In this paper, the used hyperparameters are listed in Table 8. Additionally,
because the initial weights in the SAE were randomly selected, the classification process was
executed ten times. Therefore, there were 10 (times) × 4 (scenarios) × 200 (dimensions) × 2
(healthy or damaged) = 16,000 training processes. For each training process, 70% of data
were used for training, and 30% of them were utilized for validation. Figure 16 plots
the training and validation loss when there were 200 neurons in the bottleneck. The
damage-detection results when the SAE was utilized are shown in Figure 17.
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(a) Classification accuracy values using the SSB model (b) Classification accuracy values using the CSB model

Figure 17. Classification accuracy values using SAE.

Table 8. Hyperparameter of the SAE.

Hyperparameter Values

Neurons in layers (65,537)→(4096)→(512)→(1-200)→(512)→(4096)→(65,537)
Activation LeakyReLU
Optimizer Adam
Learning rate 0.0001
Batch size 128
Regularization: l2 penalty 0.001
Epochs 200

In Figure 17(a4,b4), we can see that when the bridge was healthy, the accuracy fluctu-
ated around 0.6 and 0.7. If the bridge was damaged, the accuracy could increase at first
when more dimensions were utilized. However, the accuracy became lower when the
utilized dimensions improved to more than 150. Regarding the distribution of the accuracy,
for the SSB model, the vehicle’s weights had no evident influence on accuracy. If the bridge
was damaged, most accuracy values were greater than 0.8; otherwise, if the bridge was
healthy, those values were mainly distributed around 0.6. However, for the CSB model,
we can see that when the bridge is healthy, different vehicle weights will induce different
distributions of accuracy values, as shown in Figure 17(b3). The quantiles of accuracy
values are listed in Table 9. We can see that even though for all scenarios, when the bridge
was healthy, 95% accuracy values were smaller than 0.84. However, when the bridge was
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damaged, only the normal vehicle (v0) passing on the SSB model could suit the threshold
ks = 0.84. Thus, the SAE model is not suitable for the problem discussed in this paper. In
addition, the trained model using vehicle vibrations when the bridge is healthy cannot be
used for the "damage" cases because they may have different patterns. After new vibration
data are obtained, modifying hyperparameters to train a new model can require much time,
and data processing efficiency cannot be ensured.

Table 9. Quantiles of accuracy values using SAE.

VBI model
Scenario 1: SSB+v0 Scenario 2: SSB+v5

SC1 vs. SC2 SC1 vs. SC3 SC1 vs. SC2 SC1 vs. SC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.56 0.63 0.85 0.95 0.53 0.67 0.82 0.94

VBI model
Scenario 3: CSB+v0 Scenario 4: CSB+v5

CC1 vs. CC2 CC1 vs. CC3 CC1 vs. CC2 CC1 vs. CC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.51 0.72 0.71 0.94 0.48 0.63 0.77 0.97

4.2.5. Damage Detection Using MFCCs

MFCCs have been verified to be effective in SHM [68–70] but are rarely employed
in the indirect method for bridge-health monitoring. The damage-detection results using
MFCCs are plotted in Figure 18. In Figure 18(a4,b4), we can observe that when the bridge
is healthy, the accuracy values are around 0.5, and no increase or decrease trend can be
seen. After the bridge is damaged, for the SSB model, different vehicle weights can cause
divergence in accuracy values, but both can reach high accuracy (>0.84). For the CSB
model, similarly, when the vehicle’s weight was relatively low, the accuracy was slightly
lower than in the scenario when the heavy vehicle was utilized. Furthermore, we can see
from the accuracy’s distribution (Figure 18(a3,b3)) that when the bridge was healthy, no
matter what the vehicle’s weight was, the accuracy values were intensively distributed
between 0.4 and 0.6, which can be clearly regarded as showing that the bridge was in
a healthy state. By calculating all scenarios’ quantiles, we can get Table 10.

(a) (b)

Figure 18. Classification accuracy values using MFCCs. (a) Classification accuracy values using the
SSB model. (b) Classification accuracy values using the CSB model.
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Table 10. Quantiles of accuracy values using MFCCs.

VBI model
Scenario 1: SSB+v0 Scenario 2: SSB+v5

SC1 vs. SC2 SC1 vs. SC3 SC1 vs. SC2 SC1 vs. SC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.46 0.54 0.89 0.95 0.45 0.54 0.98 1.00

VBI model
Scenario 3: CSB+v0 Scenario 4: CSB+v5

CC1 vs. CC2 CC1 vs. CC3 CC1 vs. CC2 CC1 vs. CC3

Quantile 5% 95% 5% 95% 5% 95% 5% 95%
Accuracy 0.45 0.54 0.91 0.99 0.46 0.54 0.98 1.00

In Table 10, we can see that when the bridge was healthy, for all four scenarios, 95%
accuracy values were lower than 0.54, which is acceptable when the threshold ks = 0.84
is utilized. After the damage occurred in the bridge, the accuracy became higher in
all scenarios, and 95% values can be greater than the threshold. Furthermore, it can
also be observed that when the heavy vehicle was used, the accuracy became higher
(from 0.89 to 0.98 for the SSB model and from 0.91 to 0.98 for the CSB model). The
accuracy difference when the bridge was healthy and damaged was more identifiable.
Thus, similarly to the analysis where the raw frequency responses are utilized, a heavier
vehicle (around 5% of the bridge’s mass) is recommended when the proposed method is
utilized in practical engineering.

The above analysis utilized all "healthy" and "damage" runs to perform damage
detection. However, in practical engineering, damage can occur in a specific position with
a deterministic degree at a time Ti. If the cases in Table 2 are analyzed separately, the
damage-detection results using MFCCs can be found in Tables 11 and 12.

It can be seen that when the threshold of 0.84 was utilized, different damage cases
could still be identified. Furthermore, we can notice that the lightest damage appeared in
case s03 or case s53 when a 2 kg mass was added to the SSB model’s middle point. After
employing the accelerations collected by the accelerometer attached to the bridge (direct
method) in Figure 6, we saw that the bridge’s fundamental frequency became 35.02 Hz in
case s03 and case s53. Compared to the intact bridge, its fundamental frequency decreased
by 0.74%. Such a minor change in the bridge’s natural frequency can still be identifiable
using the vehicle’s frequency responses, which verifies the high sensitivity of the proposed
method to damage.

Table 11. Quantiles of accuracy values using MFCCs for SSB.

Scenarios Scenario 1: SSB+v0 Scenario 2: SSB+v5

VBI model Case s00 vs. Case s00 Case s50 vs. Case s50
Quantile
Accuracy

5% 95% 5% 95%
0.46 0.54 0.46 0.54

VBI model Case s00 vs. Case s01 Case s50 vs. Case s51
Quantile
Accuracy

5% 95% 5% 95%
0.92 1.00 0.98 1.00

VBI model Case s00 vs. Case s02 Case s50 vs. Case s52
Quantile
Accuracy

5% 95% 5% 95%
0.89 0.98 0.89 1.00

VBI model Case s00 vs. Case s03 Case s50 vs. Case s53
Quantile
Accuracy

5% 95% 5% 95%
0.92 0.98 0.96 1.00
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Table 12. Quantiles of accuracy values using MFCCs for CSB.

Scenarios Scenario 3: CSB+v0 Scenario 4: CSB+v5

VBI model Case c00 vs. Case c00 Case c50 vs. Case c50
Quantile
Accuracy

5% 95% 5% 95%
0.46 0.54 0.45 0.54

VBI model Case c00 vs. Case c01 Case c50 vs. Case c51
Quantile
Accuracy

5% 95% 5% 95%
0.96 1.00 0.96 1.00

VBI model Case c00 vs. Case c02 Case c50 vs. Case c52
Quantile
Accuracy

5% 95% 5% 95%
0.93 0.99 0.97 1.00

VBI model Case c00 vs. Case c03 Case c50 vs. Case c53
Quantile
Accuracy

5% 95% 5% 95%
0.97 1.00 0.95 1.00

VBI model Case c00 vs. Case c04 Case c50 vs. Case c54
Quantile
Accuracy

5% 95% 5% 95%
0.91 1.00 0.97 1.00

5. Conclusions and Future Work

A promising machine learning-based method called A2M for detecting the bridge’s
damage using accelerations of moving vehicles is proposed in this paper. It is independent
of adjusting the vehicle parameters and can suit different types of beam bridges. Even
though it is supervised, when applied in practical engineering, the labels of damaged
cases are unnecessary. For the machine learning model, the vehicle’s full-band frequency
responses are typically utilized as the input for training at first. Then, to improve the
efficiency and damage detection precision, several dimension reduction techniques can
be explored to space the vehicle’s frequency responses into low-dimension spaces for
classification. The main conclusions are drawn below:

1. Apart from the vehicle’s frequency responses in a low range (0–50Hz), its full-band fre-
quency responses contain abundant information about the bridge’s health conditions
and thus are recommended to be considered in bridge-health-condition identification.

2. When the A2M was employed for bridge-health monitoring, in this study, the thresh-
old was determined as 0.84 to detect the bridge’s damage, which can be used as
a reference for similar engineering applications.

3. Among all DRTs, utilizing the threshold determined by raw frequency responses, we
found that PCA and MFCCs can work well for the proposed dimension reduction
problem. UMAP, MDS, and SAE depend on different scenarios or hyperparameters
and may fail sometimes.

4. MFCCs are more sensitive to damage than PCA. This caused the accuracy values to
be centered around 0.5 when the bridge was healthy, but the accuracy values became
high after the bridge was damaged. The results are beneficial for detecting the bridge’s
damage using the A2M.

5. Based on the damage-detection results using the vehicle’s raw frequency responses
and MFCCs, a heavy vehicle (>5% of the bridge’s mass) is recommended but
not mandatory.

Even though promising results were obtained with the laboratory environments, some
special damage types, such as defects of supports and extremely slight damage, were not
considered. In addition, the proposed method required the usage of the same vehicle,
and possible solutions and the influences of different vehicular characteristics on damage
detection deserve further exploration. Improvement of the proposed method can include
more factors, e.g., using different vehicles and bridges, considering effects of wind and
temperature, and multiple moving vehicles. Scale effects of the laboratory experiments and
damage sensitivity will also be investigated before field tests.
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