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ABSTRACT: Bridge frequency identification using passing vehicles has been demonstrated as 
a promising approach in the last two decades. Compared to the traditional method that requires 
sensor systems installed on the bridge, the indirect method only needs a few sensors mounted on 
passing vehicles, making it potential to monitor a large number of bridges rapidly and econom-
ically. However, currently, most studies just checked the existence of the bridge’s frequencies in 
the vehicle’s vibrations and explored to identify its frequencies accurately. Few studies investi-
gated the damage detection of bridges using indirectly extracted bridge frequencies. This paper 
presents an indirect bridge damage detection method using bridge frequencies identified from 
a passing two-axle vehicle’s vibration data. Initially, the bridge’s finite element model is carefully 
built, updated, and divided into several substructures. Damage factors of different substructures 
are utilized to represent their damage degrees. Then, the bridge’s frequencies will be identified 
from the passing vehicle’s vibrations. At this stage, contact-point responses of the vehicle are 
back-calculated from its accelerations, and the residual contact-point responses of the two axles 
are employed to eliminate the vehicle’s frequencies and inverse effects of road roughness, 
making the bridge’s frequencies highlighted in the frequency domain. Thirdly, an objective func-
tion based on numerical experiments is proposed to locate and quantify the damage. The pro-
posed method is verified numerically by a half-car model and a simply supported bridge in this 
paper. The results indicate that both the locations and degrees of damage can be identified 
under different influence factors and show great potential in practical applications.

1 INTRODUCTION

The safety of bridge structures has been a concern in the last decades due to their deterioration 
and collapse (Barker 2022). Structural health monitoring (SHM) can provide essential tech-
niques for bridge health condition assessment (Bao et al. 2019). Mature approaches have been 
developed by scholars using sensors installed directly on the bridge (the direct method). How-
ever, conventional methods typically need a large number of sensors mounted on the target 
bridge to form a sensing system, which is expensive and time-consuming.

To monitor the bridge indirectly, the drive-by method was proposed by Yang et al. (2004). 
The idea just requires several sensors adequately installed on the vehicle rather than the bridge 
(the indirect method), thus is economical and easy-to-operate. Since CP responses have noth-
ing to do with the vehicle, no vehicle frequencies will appear in the frequency-domain spec-
trum, Yang et al. (2022) proposed to identify the bridge’s frequencies using residual CP 
responses of a half-car model. Employing CP responses of the vehicle can improve the preci-
sion of identifying the bridge’s frequencies. However, currently, few studies explored locating 
and quantifying the bridge’s damage using the indirectly identified frequencies. The substruc-
ture isolation method is one of the effective methods to identify structural damage, in which 
the substructure is separated from the whole structure and thus can be analyzed individually 
(Hou et al. 2011, 2019, 2020a; Li et al. 2022). Combined with the indirect method, it has the 
potential to identify the bridge’s damage indirectly.
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This paper aims to locate and quantify the bridge’s damage using indirectly identified 
bridge frequencies from the passing vehicle. Firstly, the equations for back-calculating CP 
responses using the half-car model with four Degrees of freedom (DOFs) are derived. Then, 
an objective function employing the identified frequencies is proposed. Thirdly, a numerical 
experiment is carefully designed to verify the proposed method. The remainder of this paper is 
structured as follows: Section 2 introduces the theoretical foundations for calculating CP 
responses and building objective functions. Section 3 provides the numerical simulation of 
a Vehicle Bridge Interaction (VBI) system and discusses several damage cases and influencing 
factors. Finally, this paper is concluded in Section 4.

2 THEORETICAL FOUNDATIONS

2.1  CP responses

2.1.1 VBI model
This section employs a half-car model with four DOFs, and the bridge is simulated by 
a simply supported beam, as illustrated in Figure 1. The finite element (FE) model for the VBI 
system is built in MATLAB.

In Figure 1, four DOFs of the vehicle are illustrated by red arrows. They are vehicle body 
bounce zv, body pitching θv, and bounces of front and rear axles zt1, zt2. The displacements 
between the tire and road profile are represented by uc1 and uc2. The mass of the vehicle body 
is mv, and its pitching moment of inertia is Ivθ. The masses for front and rear axles (including 
wheels) are mt1 and mt2, respectively. The distances between the gravity center and front and 
rear axles are a1 and a2. The stiffness and damping of the suspension system are represented 
by ks1, ks2, cs2, cs2, and for the tires, they are kt1, kt2, ct2, ct2 respectively. The vehicle’s speed is 
denoted by v. The vehicle’s dynamic equilibrium equation is represented by Equation (1),

where Mv, Cv and Kv are the vehicle’s mass, damping, and stiffness matrices; €z tð Þ;_z tð Þ and z(t) 
are its acceleration, velocity, and displacement vectors, respectively; pv is the input excitation 
vector for the vehicle. These matrices are shown in Equations (2~5),

Figure 1.  Half-car model and the simply supported beam.
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where uci = ubi + zri, _uci ¼ _ubi þ _zri, and ubi; _ubi are the bridge’s deflection and velocity at the 
i-th contact point.

For the bridge, it is simply supported at each end, as shown in Figure 1. The beam can be 
divided into Nb Euler-Bernoulli elements and Ns substructures for damage locating purposes. 
Each node has two DOFs: vertical transition and rotation. The bridge’s vibration equations 
can be denoted by Equation (6),

where Mb, Cb and Kb are the bridge’s mass, damping, and stiffness matrices. In this paper, the 
damping is simulated by the Rayleigh damping assumption, which can be obtained by Cb = 
αMb + βKb, where α and β can be obtained when the first two order damping ratios ξ1; ξ2 are 
set beforehand.

The interaction of the vehicle and the bridge is accomplished by the tires. When the tires of 
the vehicle are not on the bridge’s nodes, the Hermitian cubic interpolation function is 
employed to distribute the CP force to its two adjacent nodes. This process can be finished by 
Equations (7~10),

where xi(t), i = 1,2 is the distance of the i-th contact points on the j-th element to the bridge’s left 
end at t time, and le is the length of the bridge’s element. By employing the Newmark-β method, 
we can get the bridge’s deflections at nodes, namely zb. Then the deflection at contact points can 
be calculated using ub ¼ NT

c zb, and the velocity can be obtained as _ub ¼ vðN
0

cÞ
T zb þNT

c _zb. 
Therefore, Equation (5) can be updated accordingly. After several iterations, the interaction 
between the vehicle and the bridge can converge at an acceptable precision.
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2.1.2 Road roughness
In this paper, the road roughness is generated according to ISO 8608 (Technical Committee 
ISO/TC 1995). The procedure can be represented by Equations (11) and (12),

where r(x) is the generated road roughness. θi is uniformly distributed between 0 and 2π. Δn is 
selected as 0.01 cycle/m. n0 is taken as 0.1 cycle/m, and ni is set as numbers from 0.01 to 10 m-1 

with an interval of 0.01m-1. Gd (n0) will be determined by the road class used in the simulation.

2.1.3 CP response calculation
By disassembling Equation (1), we can get the equilibrium equations related to the wheels as 
shown in Equations (13) and (14).

By taking the second order derivative of Equations (13) and (14), and rearranging items 
related to CP responses, we can get

In Equations (15~17), mti, cti, kti and ksi can be measured in experiments. €zv; €θv and €zti are 
collected accelerations when the vehicle is passing the bridge. a1 and a2 are constants shown in 
Figure 1. For first- and second-order derivatives in Equations (16) and (17), they can be calcu-
lated by first-order finite difference formulas and second-order central formulas as shown in 
Equations (18) and (19).

We can see that Equation (15) is a first-order linear differential equation. Its solution can be 
represented by Equation (20), and due to the discrete data collection, it can be rewritten as 
Equation (21),
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where Δt is the sampling time interval, and s represents the s-th sampling point of the vehicle’s 
accelerations.

2.2  Objective function

After the bridge’s frequencies are extracted from the vehicle’s vibrations, the next step is to iden-
tify the possible damage to the bridge. The proposed method requires a FE model of the 
undamaged bridge. As introduced in Equation (6), the mass, damping, and stiffness matrices of 
the undamaged bridge can be represented by Mb, Cb, and Kb. The bridge is divided into Ns 

substructures, and its damage degree can be denoted by damage factors μ ¼ μ1; μ2; . . . ; μNs

� �T , 
in which μi represents the damage factor of the i-th substructure. If the damage factor μi < 1, it 
means that the i-th substructure is damaged, and the damage degree is 1� μi. If Kbi is employed 
to represent the stiffness matrix of the i-th substructure in the global coordinates, the possibly 
damaged bridge’s stiffness matrix can be calculated by Equation (22),

where Kd
b μð Þ is the stiffness matrix of the possibly damaged bridge. The objective function 

using frequencies can be represented by Equation (23),

where ω̂k μð Þ is the natural frequencies calculated by the eigenvalue decomposition of Mb and 
Kd

b μð Þ. K means the first K order frequencies will be utilized for damage detection. ωk is the 
k-th order natural frequency indirectly identified from the passing vehicle. The term λ 1 � μk k

is the l1-norm of 1-μ. Such a term is a typical approach that promotes the sparsity of identified 
damage (Hernandez 2014; Hou et al. 2020b). The damage factors of the damaged bridge can 
be obtained by optimizing μ with an initial value.

3 NUMERICAL SIMULATIONS

3.1  Basic parameters of the VBI system

The basic parameters of the vehicle and the bridge are listed in Table 1, which is referred to 
the references (Li et al. 2020; He & Yang 2022).

For the vehicle, its speed is 5 m/s when passing the bridge and its frequencies are fv1 � fv4 as 
shown in Table 1. The axle distance is 4.2 m. For the bridge, it is divided into ten substructures 
and each substructure includes two finite elements as shown in Figure 2. The bridge is simply 
supported at each end. The bridge’s damping is temporarily set as zero and will be discussed 
in Section 3.3. The sampling frequency is set as 1 kHz.

For the road roughness, an A-class road with Gdðn0Þ ¼ 4e� 6 is employed. Due to the tire 
contact with the road, the original road roughness is smoothed accordingly. The generated 
road roughness and its PSD are shown in Figures 3 and 4.

3.2  Bridge frequency identification

The vehicle’s vibrations and responses in the frequency domain are shown in Figure 5. It can 
be seen from Figure 5 (b) that no bridge’s frequencies can be identified using the vehicle’s 
vibrations. The bridge’s frequencies have been submerged in the road roughness spectrum and 
the vehicle’s frequency-domain responses. It is hard to identify the bridge’s frequency, and fur-
ther damage detection is unachievable.
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To solve the problem, the residual CP responses of the vehicle’s two wheels are utilized. 
After the vehicle’s acceleration €zv; €θv;€zt1;€zt2 are recorded, CP responses of the front and rear 
wheels can be back-calculated using Equation (21). Then, to eliminate the inverse effects of 
road roughness, the residual CP responses of the front and rear tires are utilized. A specific 
calculation for residual CP responses can be found in reference (Yang et al. 2021). The bridge 
frequency identification results are shown in Figure 6.

Figure 2.  FE model of the bridge.

Figure 3.  FE model of the bridge.

Table 1. Basic parameters of the vehicle and bridge.

VBI Parameters (symbol) Unit Value

Vehicle

Body mass (mv) kg 17735
Body moment of inertia Ivθ kg · m2 1.47×105

Axle mass (mt1, mt2) kg 1500,1000
Suspension damping (cs1, cs2) N · s/m 3×104, 4×104

Tire damping (ct1, ct2) N · s/m 0,0
Suspension stiffness (ks1, ks2) N/m 2.47×106,4.23×106

Tire stiffness (kt1, kt2) N/m 3.74×106, 4.6×106

Axle distances (a1, a2) m 2.18,2.02
Velocity (v) m/s 5
Vehicle frequencies (fv1, fv2, fv3, fv4) Hz 1.61,2.29,10.35,15.10

Bridge

Length (lb) m 30
Flexural stiffness (EI) N/m2 1.375 × 1010

Mass per unit length (m) kg/m 2000
Bridge frequencies (fb1, fb2, fb3) Hz 4.58,18.31,41.19

Figure 4.  PSD of the road roughness.

Figure 5.  Vibrations and FFT spectrum of the vehicle.
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It can be seen that when the residual CP responses are utilized, the bridge’s frequencies are 
outstanding in the frequency spectrum. Also, for the third frequency, it can be noticed that it 
has been split into two parts: f id1

b3
¼ fb3 � 3πv=lb and f id2

b3 ¼ fb3 þ 3πv=lb. Therefore, in the later 
damage identification process, the employed bridge’s third frequency should 
be fb3 ¼ ðf

id1
b3 þ f id2

b3 Þ=2.

3.3  Damage detection

As discussed in the last sections, it can be seen that when the residual CP responses are 
employed, the bridge’s frequencies can be identified in the frequency domain. However, we 
can also notice that due to the influence of road roughness, errors in back-calculation of CP 
responses, and the separation of bridge’s frequencies, etc., the accuracy of bridge frequencies 
cannot be obtained. This section will discuss identifying the bridge’s damage using the indir-
ectly identified frequencies. There are two scenarios for the damaged bridge:

(1) Scenario 1: Minor damage, μ = [1,1,1,1,0.8,1,1,1,1,1].
(2) Scenario 2: Medium damage, μ = [1,1,0.6,1,1,1,1,1,1,1].

The same FE model used in Section 3.2 is employed for damage detection. Initially, the 
bridge is assumed as healthy, namely, the initial damage factors are μ0 = [1,1,1,1,1,1,1,1,1,1]. 
Then the damage factors are optimized using Equation (23). To verify the applicability of the 
proposed method, the damage identification results using true frequencies (ωt

k) of the dam-
aged bridge are also utilized compared with using the indirectly identified frequencies (ωk) 
with or without bridge damping. The first three frequencies when the indirect method is 
employed are utilized for damage detection, namely K=3 in Equation (23).

When the bridge damping is not considered, the bridge’s frequencies can be identified well 
(error � 1:2%) as shown in Table 2, and the damage detection results are shown in Figure 7 
(red bars). It can be seen from Figure 7 that even though there are some errors between the 
identified frequencies and the true ones, the bridge’s damage can be identified with good preci-
sion, especially when the damage degree is low. When the damage degree increases, the 
damage detection accuracy goes down, and some substructures can be wrongly identified as 
damaged (e.g., substructure 9 in Figure 7 (b)).

Figure 6.  Bridge frequency identification results using residual CP responses.

Table 2. Frequencies used for damage detection.

Scenarios Minor damage scenario Medium damage scenario

True frequencies of the damaged bridge 
ωt

k=Hz
4.469 18.252 40.464 4.429 17.279 40.083

Identified frequencies without bridge 
damping ωk;0=Hz (error)

4.483 
(0.31%)

18.276 
(0.13%)

40.172 
(0.72%)

4.483  
(1.2%)

17.414 
(0.78%)

40.000 
(0.21%)

Identified frequencies with bridge 
damping ωk;d=Hz (error)

4.310 
(3.56%)

18.621 
(2.02%)

40.517 
(0.13%)

4.310  
(2.69%)

17.069 
(1.22%)

40.510 
(1.07%)
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When the bridge’s damping is assumed as ξ1 ¼ ξ2 ¼ 0:01. The bridge frequency identifica-
tion errors increase (error � 3:56%) as shown in Table 2. Figure 7 (yellow bars) confirms the 
effectiveness of the proposed objective function on damage detection. Both the position and 
degree of the bridge’s damage can be detected when the damping is considered. But for the 
low damage scenario, the identification precision for damage degree decreases compared to 
the zero-bridge damping results.

4 CONCLUSIONS

In this paper, a damage detection strategy using indirectly identified frequencies of the bridge 
is proposed. A two-axle half-car model and a simply supported beam are utilized to verify the 
proposed method. The main concluding remarks are drawn below:

(1) The vehicle’s vibrations cannot be directly utilized to identify the bridge’s frequencies 
when the road roughness is considered. By employing residual CP responses, both the 
vehicle’s frequencies and the inverse effects of road roughness can be eliminated, making 
the bridge’s frequencies outstanding and identifiable.

(2) The bridge’s damping plays a negative role in identifying the bridge’s frequencies. The 
errors between true and indirectly identified frequencies will increase when the bridge 
damping is considered.

(3) The proposed damage detection method can be used to locate and quantify the damage 
even though there are minor errors in indirectly identified bridge frequencies, which shows 
great potential in engineering applications.

Even though the bridge’s damage can be detected with good precision, there are several fac-
tors that deserve further studies in engineering, such as multiple damage scenarios, high 
vehicle speed, engine effects, temperature effects, and ongoing traffics. The investigation of 
the above factors on damage detection will be included in our future studies before laboratory 
and field tests.
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