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Abstract
A novel criterion, based on additional virtual masses estimated in multiple tests and the Bayesian theory, is proposed in this 
paper to improve the efficiency and precision of damage identification. Initially, a method is proposed that uses the experi-
mentally measured frequency-domain response and a predetermined target frequency to estimate the required additional 
virtual mass. The proposed mass estimation method is flexible with respect to the frequency band of excitation, which can 
be thus selected according to practical engineering constraints. Furthermore, a new objective function based on the residual 
between the theoretical and experimental virtual masses is proposed. The objective function avoids calculating the structural 
modes through Eigen decomposition of the structural mass and stiffness matrices, and it thus improves the computational 
efficiency. Thirdly, based on the theoretical frequency response function of the finite element model, explicit formulas are 
derived for quick calculation of the additional masses and their sensitivities with respect to damage factors. In the next step, 
randomness and the influence of measurement noise are considered, and the approach is formulated in the probabilistic 
Bayesian framework. Finally, numerical simulations of a simply supported beam, a 3D truss structure and a 3D building, 
as well as an experimental 3-story frame, are used to verify the effectiveness of the proposed methods. The results clearly 
indicate that identified damage factors are close to real values, and thus acceptable in engineering.

Keywords Structural health monitoring (SHM) · Damage identification · Additional virtual mass · Sensitivity analysis · 
Bayesian theory

1 Introduction

The number, scale, and complexity of civil engineering 
structures are increasing, and their failures can have fatal 
outcomes. Damage identification, one of the most impor-
tant branches of structural health monitoring (SHM), can lay 
theoretical foundations for monitoring, early warning, and 
safety assessment of civil structures (Jayalakshmi and Rao 
2017). Dynamics-based damage identification methods, due 

to their convenient application in practical engineering, can 
contribute to this goal.

Structural dynamic responses contain ample information 
about structural health conditions, so that signal process-
ing methods can be used to directly provide information 
about structural damages. These methods often rely on 
wavelet transform, empirical mode decomposition (EMD), 
Hilbert–Huang transform (HHT), and variational mode 
decomposition (VMD) (Bayissa et al. 2008; Dragomiretskiy 
and Zosso 2014; Bagheri et al. 2018; Moughty and Casas 
2018; Lazhari and Sadhu 2019; Spanos et al. 2020). Such 
approaches do not need to process FE models of the moni-
tored structures and thus they can quickly identify damages. 
However, signal processing methods tend to detect just the 
position of the damage, but not its precise degree. The task 
of accurate quantification of the position and degree of the 
damage requires a FE model of the structure to be involved, 
and structural time-domain responses can be a good ref-
erence for such damage identification. It usually involves 
methods that intensively process structural equations of 
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motion (Dolatabadi et al. 2020), apply Duhamel’s integral 
(Law and Lin 2014), etc. If the system is linear and the noise 
is Gaussian, then the well-known Kalman filter can be used 
to handle the time-domain responses (Astroza et al. 2016). 
To improve numerical efficiency, the Fourier transform is 
used to change time-domain signals into frequency-domain 
signals. Li et al. (2012) proposed to reconstruct frequency-
domain responses by transforming the measured responses 
into responses at other locations with the transmissibility 
matrix. Zhang and Aoki (2020) proposed a method for 
direct identification of structural parameters by using the 
frequency-domain responses, and these parameters were 
used for damage detection. Lee and Shin (2002a, b) derived 
a frequency-domain method of damage identification from 
the dynamic stiffness equation of motion. In the process of 
optimization, structural system matrices must be repeatedly 
reconstructed. To improve the efficiency of this process, fast 
structural reanalysis methods can be used, such as the vir-
tual distortion method (VDM), see Kolakowski et al. (2008). 
Based on the VDM, Suwala and Jankowski (2012) proposed 
a method for off-line identification of modifications of struc-
tural mass. Zhang and Jankowski (2017) took advantage of 
the fast structural reanalysis by the VDM and used structural 
modes to identify damages. Lin et al. (2017) applied the 
VDM to damage detection in bridge engineering using its 
static and dynamic formulations. By the VDM, large quan-
tities of structural dynamic data can be obtained and their 
sensitivity to the structural damage can be improved, which 
facilitates precise damage identification. The construction 
of structural responses relies on the stiffness, mass, and 
damping matrices (Adhikari and Woodhouse 2001), none 
of which are unnecessary. Structural damage is usually 
defined through stiffness, but to precisely identify location 
and degree of the damage with time-domain and frequency-
domain methods, accurate mass, and damping data should 
be also known. However, damping phenomena in practi-
cal engineering are complex, and it is usually difficult to 
build an accurate damping matrix. Usually, the damping is 
approximated by using the Rayleigh damping model, which 
does not have a good performance when simulating the real 
damping (Adhikari 2006). Therefore, the error between 
practical and estimated damping can influence the preci-
sion of damage identification.

Structural modes are the most important dynamic char-
acteristics of the structure. Modal analysis methods can be 
used to identify structural modes according to time- and 
frequency-domain responses. Structural frequencies and 
modal shapes depend only on structural mass and stiffness. 
Thus, the influence of damping estimation errors on dam-
age identification can be circumvented. Mode-based dam-
age identification methods typically build objective func-
tions according to the residual between the experimental 
and theoretical modes. After that, the objective function is 

optimized to identify the damage. Natural frequencies and 
modal shapes are frequently used to determine the position 
and degree of structural damage. Salawu (1997) proved that 
natural frequency changes can be used to locate structural 
damages. Chang and Kim (2016) conducted an experiment 
with a steel frame bridge with an artificial damage, and the 
results showed that the reduction in frequency represented 
the loss of the global stiffness of the structure. Khatir et al. 
(2019) utilized the Local Frequencies Change Ratio (LFCR) 
and normalized Modal Strain Energy Indicator (nMSEDI) as 
indicators to identify damages in beam. Teaching–Learning-
Based Optimization Algorithm (TLBO) was employed with 
two-dimensional Isogeometric Analysis (IGA) to optimize 
nMSEDI. The damage in a laboratory steel beam can be 
determined using the proposed method. In the same year, 
Khatir and Abdel Wahab (2019) extended IGA to eXtended 
IsoGeometric Analysis (XIGA) method based on Proper 
Orthogonal Decomposition and radial basis functions. 
Combined with Jaya and Cuckoo optimization, single and 
multiple damages in plate structures could be identified 
accurately. In the next year, Khatir et al. (2020) utilized 
Jaya algorithm to train Artificial Neural Network (ANN) 
models, different crack length on plates can be identified by 
the trained ANN model. Not only the natural frequency can 
be used, but also the structural FRF is a good reference for 
damage identification. Lee and Shin (2002a, b) introduced 
an FRF-based damage identification method, which quan-
titatively showed the effects of omission of high vibration 
modes and suggested two simple but notable strategies to 
setup a well-posed damage identification problem: (1) use 
different excitation frequencies and different measurement 
points, and (2) reduce the domain of the problem. Kim et al. 
(2003) proved that damage identification could be carried 
out using only a limited amount of modal information, which 
however needs to be accurate. In the process of modal iden-
tification, responses are often affected by ambient noise and 
temperature-related effects. The influence of environmental 
temperature can be eliminated in damage identification using 
multi-modal analysis (Gillich et al. 2019). To eliminate the 
impact of noise pollution, Bayesian theory was introduced 
to damage identification process. The difference between 
the traditional methods and Bayesian damage identification 
is that Bayesian methods provide probability distributions 
instead of single deterministic numbers, which better reflects 
practical situations. Beck et al. (1998) proposed a Bayes-
ian model updating method, which quantifies uncertainty 
of model parameters to be identified in terms of the entropy 
and uses it as a criterion for optimal sensor placement. 
Later, researchers were developing the approach continu-
ously. Sedehi et al. (2019) proposed a hierarchical Bayesian 
method in time-domain to improve the reliability and robust-
ness of traditional Bayesian methods. Hoskere et al. (2019) 
proposed a Bayesian damage recognition method for miter 
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gate crack damage. Yan et al. (2015) considered uncertain-
ties due to modeling errors and measurement noise in the 
Bayesian framework and proposed a guided Bayesian infer-
ence approach for the detection of multiple flaws in struc-
tures. Due to the consideration of uncertainty, the robustness 
of damage identification to noise can be improved (Huang 
et al. 2018). Hou et al. (2018) proposed the additional virtual 
mass method based on the Bayesian theory and proved it by 
a frame structure experiment.

However, effectiveness of mode-based methods is 
adversely influenced by the practical limitations related 
to the number and placement of measurement points and 
modal insensitivity to local damage. Modification of physi-
cal parameters of the monitored structures was proved to 
be an effective way to avoid these problems. Nalitolela 
et al. (1993) were the first to propose the method of adding 
a physical mass or stiffness to a structure. Thereafter, the 
approach was developed further: Dems and Mroz (2010) 
used additional control parameters (e.g., mass, support, 
load, or temperature) in combination with modal, static, and 
thermodynamic analysis to identify damage. Dackermann 
et al. (2011) added practical masses to a two-story framed 
structure to simulate frequency changes due to structural 
damages. Furthermore, to improve the precision of damage 
identification, Lu et al. (2017) comprehensively analyzed 
the values, numbers, and positions of additional masses. 
Rajendran and Srinivasan (2015) investigated additional 
mass methods and predicted that the inclusion of rotational 
degrees of freedom (DOFs) should play a significant part in 
adding mass for damage identification. Based on an addi-
tional mass, Mousavi et al. (2020) proposed a new signal 
reconstruction method used for damage detection of beams. 
However, in practice, it is usually difficult to add a real mass 
(or other parameters) to the structure. Such a mass must 
be large enough to influence the structural dynamics, but it 
can be then difficult to handle and attach, and it might even 
contribute to the damage by itself. Adding virtual physical 
parameters to the structure is more efficient in practical engi-
neering. Zhang et al. (2020) derived general equations for 
virtual modifications, including virtual mass, stiffness, and 
damping. Zhang et al. (2018, 2019) proposed to use a vir-
tual control system to improve the accuracy of substructure 
identification. Tang et al. (2006) investigated the relation-
ship between the virtual flexibility matrix and local stiffness 
changes by adding virtual forces to the structure. Hou et al. 
(2013) proposed the additional virtual mass method for dam-
age identification, which effectively avoided the problem of 
adding real masses to the structure. The method was subse-
quently applied to bridges, truss structures, and frame struc-
tures. There are two steps for the additional mass method: 
(1) the measured experimental time-domain excitation and 
response are utilized to construct the structural response as 
if the mass was physically added to the structure; (2) modal 

characteristics of the new structure with the (virtually) added 
mass are identified using the obtained response, and used as 
a reference for damage identification. This method combines 
the advantages of time-domain methods and mode-based 
methods. Firstly, the response of the structure after the mass 
is added can have an increased sensitivity to the damage, 
which retains the advantages of time-domain methods. Sec-
ondly, by using structural modes the influence of damping 
and noise on damage identification is decreased. Typically, 
the additional virtual mass method determines the additional 
mass at first and then calculates the corresponding natural 
frequency of the modified structure. However, when the 
excitation frequency band is narrow, such an approach can-
not be used. The mass estimation method, proposed by Hou 
et al. (2020), first determines the desired structural natural 
frequency and then calculates the corresponding additional 
mass. The mass is virtually added to the structure, and its 
natural frequency is verified and used as a reference for 
monitoring and damage identification.

However, objective functions based on the residual of 
natural frequencies require the frequencies to be repeatedly 
computed: each iteration and each additional virtual mass 
require a new eigen decomposition to be performed. The 
computational efficiency of such a process is relatively low.

In this paper, a novel objective function is proposed that 
directly involves the estimated masses instead of the natural 
frequencies to increase the computational efficiency. Addi-
tionally, the entire method is formulated in the Bayesian 
framework, which allows multiple experimental data to be 
effectively used and decreases the influence of ambient noise 
and measurement errors.

The remainder of this paper is organized as follows: 
Sect. 2 introduces the principles of the additional mass 
method. Section 3 explains the damage identification pro-
cess based on the estimated additional virtual masses. Sec-
tion 4 proposes a probabilistic formulation in the Bayesian 
framework. Section 5 verifies the proposed methods using 
three numerical examples of varying complexities. Finally, 
in Sect. 6, the proposed method is experimentally validated 
with a laboratory plane frame. The paper is concluded in 
Sect. 7.

2  Additional virtual masses

The additional virtual mass method is straightforwardly 
applicable because it requires only the excitation and the 
acceleration response of one certain DOF of the structure. 
Then, the dynamic response of the new structure can be 
numerically constructed, as if any mass was physically 
added to that DOF. If f (�) is the Fast Fourier Trans-
form (FFT) of the excitation and a(�) is the FFT of the 
acceleration response in the same DOF, then the FRF is 
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h(�) = a(�)∕f (�) . As derived in Hou et al. (2013), the FRF 
hV(�,m) of the same structure with an additional mass m 
added in the same DOF can be expressed as in Eq. (1). This 
formula can be employed to add any additional virtual mass 
m to a real structure. The FRF of the new structure with 
the added mass provides additional information for damage 
identification.

A typical relationship between structural natural fre-
quency and the value of the additional mass is shown in 
Fig. 1. Natural frequency decreases with the increase of the 
additional mass. The curve in Fig. 1 involves two variables: 
natural frequency and additional mass. Depending on which 
of them is known in advance, there are two ways to analyze 
the structure.

(1) Determining the natural frequency according to the 
additional mass. Given the virtual mass mV , the peak 
of hV

(
�,mV

)
 in the frequency domain is used to deter-

mine the natural frequency �V , and then �V is used 
for damage identification. A typical example can be 
found in the literature (Hou et al. 2018). This method 
requires that the additional mass mV keeps the natural 
frequency within an appropriate excitation frequency 
band. If the band is 

[
�a,�b

]
 as shown in Fig. 1, then �V 

happens to be outside and there is a need to readjust the 
additional mass value to m∗ so that the corresponding 
natural frequency �∗ is within 

[
�a,�b

]
 . The adjustment 

process may need multiple trial calculations, which is 
inconvenient and time-consuming.

(1)hV(�,m) =
a(�)

f (�) + ma(�)
=

h(�)

1 + mh(�)

(2) (2) Determining the additional mass according to the 
target frequency. To solve the problem of a narrow-
band excitation, the expected natural frequency (named 
the target frequency) is determined first, and then the 
additional mass is estimated accordingly. Within the 
excitation frequency band 

[
�a,�b

]
 , given that the struc-

tural target frequency is �∗ , the corresponding addi-
tional mass can be obtained from the curve in Fig. 1 
as m∗ . Reference (Hou et al. 2020) proposed a direct 
and an improved additional mass estimation method 
using the geometric shape of 1∕h(�) in the vicinity of 
�∗ , as shown in Fig. 2. The value m# is obtained when 
the direct estimation method is used, see Eq. (2); the 
calculation is based on a single point of FRF, which 
is convenient, but the precision of mass estimation 
can be easily influenced. Therefore, the FRF data near 
�∗ are fitted to utilize the slope of the curve 1∕h(�) 
and improve the precision of mass estimation. The 
improved estimated mass m∗ can be calculated by 
Eq. (3),

where Re represents the real part, Imag represents 
the imaginary part, and y�(�∗) is the derivative of the 
(approximated) curve at the point A∗ in Fig. 2.

To sum up, the method of estimating the virtual mass 
using the target frequency is not limited by the excitation 
bandwidth, and it is easily applicable in practical engineer-
ing. This paper develops on this basis. To improve the opti-
mization efficiency and avoid the repeated calculation of the 
Eigen decomposition, a new objective function is established 

(2)m# = −Re(1∕h(�∗))

(3)m∗ = −Re(1∕h(�∗)) − Imag(1∕h(�∗))y�(�∗),

Fig. 1  Relationship between additional mass and natural frequency
Fig. 2  Geometric interpretation of the direct and improved estimation 
methods
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for damage identification based on the residual of the esti-
mated additional mass. Furthermore, the proposed method is 
formulated in the Bayesian framework to improve the accu-
racy and reliability of damage identification.

3  Damage identification based on estimated 
additional virtual masses

3.1  Objective function based on additional virtual 
mass

As illustrated in Fig. 3, the structure to be identified is 
divided into n substructures. The coefficient �j denotes 
the damage factor of the jth substructure. It is defined as 
the ratio of the stiffness before and after the damage. Let 
� =

[
�1,�2,… ,�n

]
 . The stiffness matrix �(�) of the dam-

aged structure can be calculated as �(�) =
∑

j �j�j , where 
�j is the stiffness matrix of the jth substructure expressed in 
the global coordinate system.

After the virtual mass is added to the structure, the value 
of natural frequency is reduced. Adding masses in different 
positions of the structure has different influences on the 
structure. Therefore, the mass is added consecutively to dif-
ferent substructures. Assume that there are n substructures 
and g target frequencies at each position. For each target 
frequency, k dynamic experimental tests are performed. So 
there are n × g × k sets of experimental data in total and each 
set is used to estimate a virtual mass value. Denote the ith 
target frequency of the jth substructure as �∗

i,j
 . In the pth 

experiment at the jth position using the ith target frequency, 
the additional mass is calculated by Eq. (3) as mp,i,j . When 
mp,i,j is added to the FE model of the jth substructure, the 
corresponding ith frequency can be calculated as �

(
�,mp,i,j

)
 , 

where � is the damage factor. Reference Hou et al. (2020) 
uses the residual between the frequency �

(
�,mp,i,j

)
 and the 

target frequency �∗
i,j

 to establish the objective function Δ� , 
see Eq. (4). To identify the damage, the value of Δ� is mini-
mized with respect to �.

However, the objective function based on the above fre-
quency residual has some drawbacks:

(1) Each additional mass mp,i,j estimated in the experiment 
must be added to the FE model to calculate the natu-
ral frequency. The calculation of Eq. (4) needs a large 
number of n × g × k modifications of the structure and 
modal decompositions. It is computationally expensive.

(2) Repetitively at each optimization step, this method uses 
the updated structural mass and stiffness matrices for 
all the above eigen decompositions anew. It addition-
ally increases the computational cost of optimization 
and damage identification.

  To improve the efficiency of optimization and to 
avoid the repeated eigen decomposition, a new objec-
tive function based on the virtual mass residual is 
established and proposed here:

where m
(
�,�∗

i,j

)
 is the additional virtual mass corre-

sponding to the i th target frequency �∗
i,j

 that needs to 
be added to the j th substructure of the FE model when 
the damage factor is � . The objective function Eq. (5) 
does not need at all to calculate the eigenvalues of the 
structural system matrices. The optimization efficiency 
is thus much higher. In a single calculation of the objec-
tive function, only n × g additional virtual masses need 
to be computed. As discussed in the following sections, 
they can be quickly obtained in a direct way by using 
the FRF of the theoretical FE model.

3.2  Calculation of the additional virtual mass 
and its sensitivity analysis

To accurately calculate the additional virtual mass m
(
�,�∗

i,j

)
 

using the theoretical FE model under a certain damage factor 
� , the following three issues need to be considered:

(1) It is known from Eqs. (2) and (3) that the additional 
virtual mass can be estimated by using the FRF. There-
fore, the FRF of the structure under a certain damage 
factor is the key to estimate the virtual mass. This sec-
tion discusses two methods of calculating the structural 
FRF based on structural system matrices and the VDM.

(4)Δ�(�) =
∑
p,i,j

(
�
(
�,mp,i,j

)
− �∗

i,j

�∗
i,j

)2

(5)Δm(�) =
�
p,i,j

⎛⎜⎜⎜⎝

m
�
�,�∗

i,j

�
− mp,i,j

mp,i,j

⎞⎟⎟⎟⎠

2

,

Fig. 3  Calculation of additional masses using target frequencies
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(2) The natural frequency of the structure is related to the 
stiffness and mass matrices of the structure, but not to 
the damping. Therefore, for the theoretical FE model, 
the damping can be neglected to eliminate its influence 
on the virtual mass estimation and to ensure that the 
required additional virtual mass is accurately calcu-
lated.

(3) The derivation of the mass sensitivity to the damage 
factor helps to improve the efficiency of optimization 
and damage identification.

3.2.1  Calculation of virtual masses based on structural 
matrices

(1) Virtual mass estimation: If � denotes the damage factors 
of the FE model and the structural damping is neglected, the 
acceleration frequency response matrix can be calculated 
using the structural mass matrix � and the stiffness matrix 
�(�) . Denote the DOF number at which the additional mass 
is added by nT . Let τ = [0, 0,… , 1,… , 0, 0]T , which is 1 only 
in the nT th entry, and the remaining entries are 0. When the 
target frequency is � , the acceleration frequency-domain 
response at � is h(�,�) as in Eq. (6).

Since damping is ignored, the FRF of the structure has 
no imaginary part, that is, y�(�∗) in Eq. (3) is 0, and Eq. (2) 
and Eq. (3) are the same. Therefore, for the target frequency 
� , the frequency-domain response h(�,�) can be used to 
quickly estimate the additional virtual mass m(�,�) accord-
ing to Eq. (2):

The virtual mass estimated using Eq. (7) is accurate, 
because (a) h(�,�) is calculated by the mass matrix � and 
the stiffness matrix �(�) , so that it is the exact response of 
the FE model without the influence of noise or measurement 
errors; (b) since the damping is 0, the structural natural fre-
quency is consistent with the peak position of the frequency-
domain response.

In summary, for the theoretical FE model, the value of the 
additional virtual mass can be directly calculated using the 
mass and stiffness matrices of the structure, without modal 
decomposition, for any target frequency �∗ . If the number 
of structural DOFs is N , matrix inversion and eigen decom-
position are both of the same time complexity O(N3 ), but for 
large matrices (> 1000 × 1000), the operation of inversion is 
typically faster than the eigen decomposition by a factor of 
about three.

(6)h(�,�) = −�T�2
(
−�2� +�(�)

)−1
�

(7)m(�,�) = −
1

h(�,�)
= −

1

�TH(�,�)�
.

(2) Sensitivity of virtual mass to damage factor: if the 
sensitivity of the virtual mass Eq. (7) to the damage factor 
can be obtained, the optimization efficiency will be greatly 
improved by employing gradient-based optimization algo-
rithms. The derivative of the estimated additional virtual 
mass m(�,�) with respect to the damage factor �l is called 
mass sensitivity, and it can be expressed as is shown in 
Eq. (8).

where �l is the stiffness matrix of the l th substructure 
expressed in the global coordinate system, and �l is the dam-
age factor of the l th substructure.

3.2.2  Calculation of virtual masses based on the VDM

(1) Quick construction of the FRF based on the VDM: The 
key step of using the FE model to estimate the virtual mass 
is to obtain the acceleration FRF h(�,�) of the structure 
under a given damage factor � . When the number of struc-
tural DOFs is relatively large, the inversion of the dynamic 
stiffness matrix in Eq. (6) is still relatively time-consuming. 
Therefore, the VDM, which is a fast structural reanalysis 
method, can be used to quickly construct the FRF. This sec-
tion presents the basic formulas, while their derivation and 
interpretation can be found in references Kolakowski et al. 
(2008), Suwala and Jankowski (2012), Zhang and Jankowski 
(2017), or Lin et al. (2017). If hL(�) is the acceleration FRF 
of the undamaged structure, then according to the VDM, 
h(�,�) and hL(�) are related to each other as

According to Eq. (9), the damage is equivalently modeled 
with the virtual distortions that act in the undamaged structure. 
The symbol �0

�l
(�) denotes the amplitude of the � th virtual 

distortion of the l th substructure (excitation in the coordi-
nate of the respective virtual distortion ��l ), and D�

�l
(�) is the 

corresponding frequency-domain response of the undamaged 
structure to a unit harmonic virtual distortion. The virtual dis-
tortions ��l are defined as eigenvectors that correspond to the 
positive eigenvalues of the stiffness matrix �l of the l th sub-
structure, �l =

∑
���l��l�

T
�l

 . The damage-equivalent excita-
tions �0

�l
(�) can be shown to depend on the damage factor μ and 

the FRF of the undamaged structure as follows:

where �L
�l
(�) is the FRF of the undamaged structure in the 

virtual distortion coordinate ��l , D�l��(�) is the correspond-
ing frequency-domain response of the undamaged structure 

(8)
�m(�,�)

��l

=
1

�2

�TH(�,�)�lH(�,�)�

h2(�,�)
,

(9)h(�,�) = hL(�) +
∑

�

∑
l
D

�

�l
(�)�0

�l
(�).

(10)

(
1 − �l

)
�L
�l
(�) = �0

�l
(�) −

(
1 − �l

)∑
�

∑
�

D�l��(�)�
0
��
(�),
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to a unit harmonic virtual distortion ��� , and �l denotes the 
damage factor of the l th substructure. Stated in the matrix 
form, Eq. (9) and Eq. (10) yield together

where 
[
�
]
 is the diagonal matrix diag(�) , while �� and � 

denote matrices with appropriately arranged coefficients 
D

�

�l
(�) and D�l��(�).
After h(�,�) is obtained using Eq. (11), the additional 

virtual mass m(�,�) for the target frequency � can be calcu-
lated by Eq. (7). The computational cost of the VDM-based 
method described above is O (N3

�
), where N� is the total num-

ber of virtual distortions of all considered substructures. It 
should be noted that in typical applications N� is often just a 
fraction of the total number of all structural DOFs, N𝜆 ≪ N 
(Zhang and Jankowski 2017).

(2) Sensitivity analysis of virtual mass based on the 
VDM: Differentiating Eq. (11) with respect to the damage 
factor yields

where �l are partitioned unit matrices that correspond to the 
arrangement of the damage factors, 

�
�
�
=
∑

l�l�l . By using 
the shorthand notation Ul =

�h(�,�)

�l

 , � = I −
[
�
]
 and 

� =
(
I −

(
I −

[
�
])
�
)−1 , Eq. (12) can be rewritten in a sim-

pler form as Eq. (13),

The mass sensitivity is obtained as shown in Eq. (14), 
where h(�,�) is the same as in Eq. (11).

To compare the methods based on structural system 
matrices and the VDM, it should be noted that both methods 
can be used to determine the additional virtual mass and its 
exact sensitivity. Selection of the specific method depends 
on the specific structure:

(a) When the number of structural DOFs N is close to the 
total number of virtual distortions N� , the first method 
based on structural system matrices is recommended 
due to its simplicity.

(b) When the number of structural DOFs N is much larger 
than the total number of virtual distortions N� , the 
second method based on the VDM is recommended 
because it is numerically more efficient in optimization.

(11)
h(�,�) = hL(�)+��

(
I −

(
I −

[
�
])
�
)−1(

I −
[
�
])
�L(�),

(12)

�h(�,�)

��
l

=��
(
I −

(
I −

[
�
])
�
)−1(

�
l
�
)(
I −

(
I −

[
�
])
�
)−1

(
I −

[
�
])
�L(�) − ��

(
I −

(
I −

[
�
])
�
)−1

�
l
�L(�),

(13)Ul = ����l����L(�) − ����l�
L(�).

(14)
�m(�,�)

��l

= h−2(�,�)Ul

3.3  Damage identification based on virtual mass 
sensitivity

The previous sections demonstrated that the virtual mass 
can be calculated by Eq.  (7), while its derivative with 
respect to the damage factors can be quickly found by 
Eq. (8) or Eq. (14). This allows any gradient-based opti-
mization method to be employed for minimization of the 
objective function Eq. (5) and damage identification. The 
Newton method is used in this work. To this end, the vir-
tual mass m

(
�,�∗

i,j

)
 is linearized around �0 , and in line 

with Eq. (5), compared to the experiment-based mass mp,i,j

:

Equation (15) is then rearranged and normalized by 
dividing its sides by mp,i,j . Finally, all indices p (experi-
mental tests), i (target frequencies), and j (substructures) 
are collected. The resulting linear system is overdeter-
mined, as it has n × g × k equations, but only n unknown 
damage factors. Note that its solution in the least squares 
sense corresponds to the minimum of the objective func-
tion Eq.  (5). This allows the iteration of the Newton 
method to be formulated as follows:

where the subscript # denotes the matrix pseudoinverse 
(Moore–Penrose inverse), the column vector �m collects all 
the experiment-based masses mp,i,j , the matrix � = diag

(
�m

)
 

is the respective normalization matrix, and the Jacobian 
matrix �

(
�i,�

∗
)
 consists of the appropriately arranged sen-

sitivities �m
(
�,�∗

i,j

)
∕�μl collected for all i , j,l and repeated 

for all k experimental tests. In the iterative optimization pro-
cess, the initial damage factors correspond to the undamaged 
structure �0 = [1, 1,… , 1]T.

An iterative optimization formula similar to Eq. (16) 
can be derived also for the frequency-based objective func-
tion Eq. (4) as follows:

where �(�,�m) is the column vector of natural frequencies 
obtained by adding to the FE model all the experiment-based 
additional virtual masses mp,i,j , the vector 𝛚∗ collects and 
appropriately arranges all the target frequencies �∗

i,j
 , 

�
(
�,�m

)
 is the appropriately arranged sensitivity matrix of 

natural frequencies with respect to the damage factors (Hou 

(15)

m
(
�,�∗

i,j

)
≈ m

(
�0,�

∗
i,j

)
+

�m
(
�0,�

∗
i,j

)

��

(
� − �0

)
= mp,i,j.

(16)�i+1 = �i + (�−1�
(
�i,�

∗
)
)
#
�−1

(
�m −�

(
�i,�

∗
))
,

(17)
𝛍i+1 = 𝛍i +

(
(𝐄�)

−1
𝐑
(
𝛍i,𝐦m

))#

(𝐄�)
−1(

𝛚∗ − 𝛚
(
𝛍i,𝐦m

))
,
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et al. 2013), and 𝐄� = diag(𝛚∗) is the corresponding diago-
nal weighting matrix.

4  Damage identification method based 
on Bayesian theory

Assume that the damage factors are independent and that 
their prior is normal. Their prior joint probability density 
function is thus as follows:

where c1 is a normalization constant, �0 is the initial value 
of the damage factor, generally �0 = [1, 1,… , 1]T , and � 
denotes the diagonal matrix with the variances of the dam-
age factor at the diagonal.

This section uses the additional masses mp,i,j estimated 
for the structural target frequencies as an evidence � for 
damage identification in Bayesian framework. Under the 
usual assumption of measurement data independence, the 
posterior probability distribution of the damage factors can 
be written in the following form, where the meaning of the 
subscripts is the same as in Sect. 3.1:

where the probability density function of the additional mass 
estimated for a structural target frequency is as shown in 
Eq. (20),

where m
(
�,�∗

i,j

)
 can be obtained by Eq. (7), 

∼
σi,j is the stand-

a r d  d e v i a t i o n  o f  t h e  k  v i r t u a l  m a s s e s 
�i,j = [m1,i,j,m2,i,j,… ,mk,i,j] estimated for the ith target fre-
quency at the jth substructure, see Fig. 3. The posterior 
probability of the damage factors is thus as shown in Eq. (21) 
and Eq. (22):

where c is a normalization constant, the vector �m collects 
all the masses mp,i,j , while �(�) denotes the respectively 

(18)P(�) = c1 ⋅ exp
[
−
1

2

(
� − �0

)T
�−1

(
� − �0

)]
,

(19)

P(�|�) = c1P(�) ⋅ P(�|�) = c1P(�)

n∏
j=1

g∏
i=1

k∏
p=1

P(mp,i,j|�),

(20)P
�
mp,i,j��

�
= c2 ⋅ exp

⎡⎢⎢⎢⎣
−
1

2

⎛⎜⎜⎜⎝

m
�
�,�∗

i,j

�
− mp,i,j

∼
σi,j

⎞⎟⎟⎟⎠

2⎤⎥⎥⎥⎦
,

(21)P(�|�) = c ⋅ exp[J(�)]

(22)
J(�) = −

1

2

(
� − �0

)T
�−1

(
� − �0

)

−
1

2
(�(�) −�

m
)T�−1(�(�) −�

m
),

arranged vector of the corresponding FE-based values 
m
(
�,�∗

i,j

)
 , and � is the diagonal matrix of the respectively 

arranged variances 
∼
σ
2

i,j
.

The posterior probability described by Eq. (21) is approx-
imated by a normal probability with the mean at the maxi-
mum of J(�) . To find the maximum, the gradient of J(�) 
with respect to � is calculated. By comparing it to the vector 
of zeros, Eq. (23) is obtained:

where �(�) is the appropriately rearranged mass sensitivity 
matrix ��(�)∕�� , the same as in Eq. (16). By substitut-
ing the first-order Taylor formula for �(�) into Eq. (23), 
the following iterative formula for the damage factor can 
be obtained:

where

Let the initial value of damage factor be �0 = [1, 1,… , 1]T 
and �0 = [1, 1,… , 1]

T . Then, the posterior probability of the 
damage factors is approximated by the normal distribution 
with the result optimized by Eq. (24) as the mean value. The 
variance of damage factors can be calculated with Eq. (26):

5  Numerical verification

This section verifies the proposed method using three 
numerical examples: a simply supported beam, a 3D truss 
structure, and a 3D model of a 3-story building.

5.1  Simply supported beam

5.1.1  Numerical model

A FE model of a simply supported beam is used to per-
form the process of damage identification and to compare 
the assumed and identified values of damage factors. The 
parameters of the beam are listed in Table 1. The beam 
is divided into 11 substructures and each of them has 2 
elements (see Fig. 4). Given the target frequency, the cor-
responding mass added to the middle of each substructure 

(23)�−1
(
� − �0

)
+�T (�)�−1

(
�(�) −�m

)
= {0},

(24)�i+1 = �
(
�i

)
�0 + �

(
�i

)
�m + �

(
�i

)
,

(25)
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(26)�2 = diag
(
�−1 +�T (μ)�−1 �(μ)

)−1
.
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is found. Finally, the additional virtual mass estimation 
method based on Bayesian theory is used to perform dam-
age identification.

Based on the parameters listed in Table 1, the first four 
natural frequencies of the beam can be calculated as 18.6 Hz, 
74.5 Hz, 167.5 Hz, and 297.8 Hz. By local structural sen-
sitivity analysis, the first natural frequency is selected to be 
used for damage identification.

5.1.2  Construction and comparison of additional virtual 
masses

5.1.2.1 Verification of  additional mass estimation using 
the FE model For the intact structure, assuming that the tar-
get frequency is 15 Hz for each substructure, the additional 
masses can be calculated by Eq.  (7). For example, for the 
2nd substructure, the calculated FRF is h2(�,�) = −0.0154 , 
so the additional mass is calculated as m2 = 65.0379kg . 
Indeed, if mass m2 is added to the 2nd substructure of the 
FE model, the new natural frequency is calculated as 15 Hz, 
which confirms the validity of Eq. (7).

5.1.2.2 FRF construction for a damaged beam The damage 
factors � = [1, 1, 0.8, 1, 1, 0.5, 1, 1, 1, 0.5, 1] are assumed. 
The FRFs can be calculated by the method based on the 
structural mass and stiffness matrices � and �(�) , as well 
as by the VDM method. Take the 1st substructure as an 
example. Let the target frequency be 15 Hz. The FRF can 
be calculated as h1(�,�) = −0.0036 . The additional mass 
is m1 = 276.1353kg and its sensitivity with respect to μ1 
is computed as 171.4047. Both methods yield exactly the 
same values, which confirms their validity and precision.

The beam has 63 DOFs. Through the Eigen decomposi-
tion of the substructure stiffness matrix �l , the number of 
virtual distortions (VDs) of each substructure is found to be 
6, so that the beam has 66 VDs in total. For the proposed 
beam, the numbers of the DOFs and VDs are nearly the 
same, so that the method based on � and �(�) is more effi-
cient and therefore employed.

5.1.3  Sensitivity of virtual masses

As discussed in Sect. 3.3, the mass sensitivity matrix Q is an 
important factor required by the proposed damage identifi-
cation method. Consider the first substructure of the intact 
beam, �0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] . The Rayleigh damp-
ing model is considered, and the first two modal damping 
ratios are the same. The excitation is applied to the middle 
position of the substructure and the corresponding accelera-
tion response is measured at the same point. Figure 5 shows 
the corresponding acceleration FRF h

(
�0,�

)
 computed for 

the damping ratios of 0.01, 0.02, and 0.03. Under different 
damping ratios, the FRFs of the structure are different. In 
case of a physical structure, the actual damping might be 
unknown or inaccurately identified. In such cases, the accu-
racy of damage identification can be affected if the structural 
FRF is directly used.

Figure 6 shows the corresponding additional masses, as 
computed by Eq. (3). It can be seen that the curves cor-
responding to the three considered damping ratios are 
nearly indistinguishable for the entire range of the target 

Table 1  Parameters of the simply supported beam

Length Young’s 
modulus

Density Poisson’s 
ratio

Cross-
section 
width

Cross-
section 
height

2.1 m 210 GPa 7850 kg/
m3

0.3 80 mm 35 mm

⑪

Fig. 4  Division of the beam into substructures

Fig. 5  Acceleration FRF of the first substructure

Fig. 6  Additional mass estimated by the target frequency for sub-
structure 1
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frequencies except for two small ranges near the two antires-
onance points (around 31 Hz and 98 Hz). It confirms that 
the proposed method is nearly not influenced by the damp-
ing, especially that it is recommended to select the target 
frequencies far from the antiresonance points in order to 
ensure a high signal-to-noise ratio.

The selection of the target frequency is tightly associated 
with mass sensitivity, FRF amplitude, and structural natural 
frequency. Figure 7 plots the sensitivity of the additional 
virtual mass with respect to the damage factor of the first 
substructure.

When the target frequency is not very close to the natu-
ral frequency, it can be seen from Figs. 5, 6, and 7 that the 
higher the FRF amplitude is, the smaller the corresponding 
additional mass and mass sensitivity are; in contrast, when 
the FRF amplitude is smaller, the additional mass and mass 
sensitivity are greater. Greater mass sensitivities are condu-
cive to the accuracy of damage identification. Therefore, to 
improve mass sensitivity, the selected target frequency ought 
to be far away from the structural natural frequency.

However, when the target frequency is too far from the 
natural frequency, the amplitude of the FRF is small. Under 
the same level of measurement noise, the smaller the FRF 
amplitude is, the greater the influence of the noise is, and so 
is the error of mass estimation. Hence, in order to decrease 
the detrimental effects of noise contamination, the selected 
target frequency should not be too far from the structural 
natural frequency.

To further illustrate the selection of the target frequency, 
the mass sensitivities are computed for all substructures and 
shown in Fig. 8. When the target frequency is near the natu-
ral frequency of the beam, all sensitivities tend to be almost 
zero. When the target frequency is less than the natural fre-
quency, all mass sensitivities increase with the decrease of 
the target frequency, and the relationship between them is 
consistent. But when the target frequency increases beyond 
the natural frequency, mass sensitivities first decrease and 

then increase, and most of them remain relatively low. The 
relationship between them becomes less consistent. Further-
more, when the target frequency is larger than the structural 
natural frequency, the calculated additional mass is negative, 
see Fig. 6. Negative mass value means that the correspond-
ing mass should be subtracted from the considered position 
of the structure. Such a negative mass is not physical, and it 
cannot induce high structural sensitivity, as shown in Fig. 8. 
It suggests that the target frequency should be smaller than 
the natural frequency.

Overall, the selection of the target frequency should 
equally consider the mass sensitivity, the signal-to-noise 
ratio, and the consistency of the relationship between the 
target frequency and mass sensitivity. Based on this crite-
rion, the target frequency should be smaller than the natural 
frequency, and at a certain distance from it, but this distance 
should not be too large.

5.1.4  Structural dynamic tests and additional mass 
estimation

In this section, we use 3 damage scenarios to perform dam-
age identification:

Scenario 1: � = [1, 0.4, 1, 1, 0.5, 1, 1, 1, 0.8, 1, 1] , mixed 
small and large damage;

Scenario 2: � = [1, 1, 1, 1, 0.9, 1, 1, 1, 1, 1, 1] , single small 
damage;

Scenario 3: � = [1, 1, 1, 1, 0.2, 1, 1, 1, 1, 1, 1] , single large 
damage.

Based on the analysis in Sect. 5.1.3, the target frequency 
is selected as 13 Hz. The same frequency is also selected for 
the excitation in order to obtain the frequency response data 
of the structure at the target frequency. The excitation time 
is Tf = 1.19s . In the numerical simulation process, the sam-
pling frequency is 10 kHz. The applied excitation is shown 
in Fig. 9 (a) and modeled as

Fig. 7  Sensitivity of virtual mass with respect to the damage factor of 
substructure 1 Fig. 8  Comparison of virtual masses sensitivity for all 11 substruc-

tures
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Take the first substructure as an example. The excitation 
Eq. (27) is applied, and the computed response of the sub-
structure is shown in Fig. 9b. To simulate the effects of the 
ambient noise, 5% white noise is added to the excitation and 
to the response at the same time. To analyze the relationship 
between the additional mass and the natural frequency, the 
excitation and the response should be analyzed in frequency 
domain. The FFT transforms of both signals are shown in 
Fig. 10.

The above process is repeated for all substructures in 
scenario 1. Thereafter, given the target frequency of 13 Hz, 
the additional masses can be obtained by Eq. (3). In order 

(27)f (t) =
1

2
sin

(
2��

f
t
)(
1 − cos

(
2�t∕T

f

))
for t ∈

[
0, T

f

]
.

to decrease the influence of noise, 10 tests are executed for 
each substructure, so there are a total 110 tests for the entire 
beam. The calculated masses are shown in Table 2. For 
example, for substructure 3 in test 5 in scenario 1, for the 
target frequency 13 Hz, the estimated mass is calculated by 
Eq. (3) as 30.9 kg.

5.1.5  Damage identification

The same FE model is used for damage identification, and 
the initial damage factors in the optimization process corre-
spond to the intact structure �0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] . 
When the frequency residual objective function Eq. (4) is 
used, the damage factors are optimized using Eq. (17) and 
denoted by �� . Similarly, when the mass residual objective 

(a) (b)

Fig. 9  Excitation and response: a Excitation, b Response

(a) (b)

Fig. 10  FFT of the excitation and response: a Excitation, b Response

Table 2  Additional virtual 
masses (kg) estimated for each 
substructure for the target 
frequency of 13 Hz in scenario 
1

Substructure Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

1 534.7 535.1 534.2 534.7 534.2 534.3 534.9 534.6 534.5 532.4
2 66.8 67.0 67.4 66.8 66.6 67.3 66.8 67.1 67 66.9
3 31.4 31.2 31.3 30.7 30.9 31.4 30.7 30.6 31 31.2
4 20.0 19.9 20.1 19.9 20.0 19.9 19.8 19.8 20.0 19.9
5 15.5 15.6 15.4 15.7 15.4 15.4 15.4 15.5 15.5 15.3
6 15.4 15.6 15.2 15.5 15.5 15.2 15.6 15.3 15.2 15.4
7 17.3 17.5 17.3 17.3 17.2 17.4 17.4 17.2 17.3 17.1
8 22.6 22.5 22.4 22.6 22.5 22.4 22.3 22.4 22.5 22.6
9 36.1 36.0 36.0 36.1 36.0 35.9 36 36.1 35.8 36.3
10 86.4 86.7 85.8 86.2 86.2 86.2 86.9 86.6 86.7 86.9
11 699.5 696.3 695.4 693.9 695.9 695.5 697.1 695.8 696.5 696.6
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function Eq. (5) is utilized, the damage factors are optimized 
by Eq. (16) and denoted by �m . It is worth noting that these 
three results are all deterministic. However, due to the pres-
ence of noise, the damage factors are nondeterministic, 
and the proposed Bayesian approach is used to calculate 
the damage factors. The acceleration FRF is computed by 
Eq. (6) and the additional mass is calculated by Eq. (7). 
Finally, the mean values of the damage factors are obtained 
by Eq. (24) and their covariance matrix is calculated by 
Eq. (26). For scenario 1: mixed small and large damage, all 
damage identification results are shown in Table 3.

For scenario 2: small damage, set the target frequency 
as 13 Hz, too. Using the estimated masses, damage factors 
can be identified as in Fig. 11. The standard deviation of the 
components of � is [0.0342, 0.0335, 0.0383, 0.0322, 0.0141, 
0.0440, 0.0427, 0.0406, 0.0388, 0.0358, 0.0392].

Furthermore, for scenario 3: large damage, the same 
process is performed, and the results are shown in Fig. 12. 
The corresponding standard deviation of the components 
of � is [0.0368, 0.0283, 0.0333, 0.0366, 0.0111, 0.0365, 
0.0312, 0.0389, 0.0371, 0.0308, 0.0238]. It can be seen that 

the proposed method can be successfully applied to a single 
small damage and a single large damage as well.

Table 4 lists the number of iterations and the average 
computation time of each iteration for all four identification 
methods in scenario 1 used as an example. All methods yield 
their final results in no more than 5 iterations. The Bayes-
ian identification method based on the estimated additional 
masses is the most efficient.

The relative error of the damage factor �2 (2nd substruc-
ture) after every iteration is listed as an example in Table 5. 
Both deterministic methods, based on the frequency and 
mass residuals, converge at the 5th iteration. However, the 
efficiency of the frequency-based method Eq. (4) is poor: it 
uses more time in each iteration because of the need for a 
repeated calculation of the eigenvalues. The method based 
on the mass residual Eq. (5) is much more time efficient. 
The mean values of the damage factor, as estimated with 
the proposed Bayesian approach, are relatively close to the 
assumed actual values. The standard deviations of � are rela-
tively small. The errors between the estimated mean val-
ues of � and the actual values are within 5%, and the mean 
deviation equals 1.1 � . Such values are permitted in practical 
engineering.

5.2  Truss structure

5.2.1  Truss model

The numerical simulation model of the truss structure is 
shown in Fig. 13a, in which the number of each member is 
explicitly shown. The structure is simply supported at both 
ends, with a length of 2.4 m, a height of 0.45 m, and a width 
of 0.56 m. There are 51 members and 102 elements in total. 
The cross-section of each member is shown in Fig. 13b. 
The outer diameter of the member is 10 mm, and the inner 

Table 3  Damage identification results in scenario 1

Substructure 1 2 3 4 5 6 7 8 9 10 11

Theoretical value 1.0000 0.4000 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000 0.8000 1.0000 1.0000
�� 0.9986 0.3932 0.9902 1.0000 0.4782 1.0000 0.9692 0.9537 0.8121 0.9858 0.9973
�
m

0.9971 0.3927 0.9882 1.0000 0.4775 1.0000 0.9677 0.9524 0.8111 0.9844 0.9959
Mean value of � 0.9762 0.4015 0.9584 0.9589 0.5326 0.9698 1.0000 0.9465 0.8254 0.9727 1.0000
Standard deviation of � 0.0212 0.0055 0.0355 0.0321 0.013 0.0374 0.032 0.0259 0.0167 0.0201 0.0196

Fig. 11  Damage identification for scenario 2

Fig. 12  Damage identification for scenario 3

Table 4  Number of iterations and the total computation time in sce-
nario 1

�� �
m

Mean value of �

Number of iterations 5 5 4
Time of iteration 1.1368 s 0.2183 s 0.1805s
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diameter is 4 mm. The material of the truss structure is steel 
with Young’s modulus of 206 GPa, Poisson ratio of 0.3, and 
a density of 7850 kg/m3.

It should be emphasized that each member in this model 
is composed of two beam elements. It allows the excitation 
to be perpendicularly applied in the middle of each member.

5.2.2  Damage identification

Assume that the damage factors of the damaged truss struc-
ture are �(5) = 0.6 , �(10) = 0.8 , �(15) = 0.5 , �(20) = 0.8 , 
�(25) = 0.4  ,  �(30) = 0.2  ,  �(35) = 0.4  ,  �(40) = 0.8 , 
�(45) = 0.8 , �(50) = 0.6 , �(others) = 1.0 as shown in 
Fig. 14.

Then, a harmonic excitation is applied to each member of 
the truss. The direction of the excitation is perpendicular to 
the involved member, and the excitation point is exactly in 
the middle of the member (an example is shown in Fig. 13a 
for member 46). 5% white noises are added to the excitation 
and the response at the same time.

The first natural frequency is selected to perform damage 
detection. Based on the analysis of the truss structure, the 
target frequency can be selected as 20 Hz. By performing 
the same process as in Sect. 5.1.5, the damage identification 
results are computed and shown in Fig. 15.

As seen in Fig. 15, damage conditions of all members can 
be identified. The proposed method using Bayesian theory 
has a higher precision of damage identification. For example, 
both deterministic methods wrongly identify member 11 as 

Table 5  Relative error of 
the damage factor of the 2nd 
substructure after every iteration

Method The relative error at each iteration

1st (%) 2nd (%) 3rd (%) 4th (%) 5th (%) 6th (%)

�� 54.28 20.35 3.45 1.68 1.70 1.70
�
m

89.10 15.25 1.43 1.88 1.83 1.83
Mean value of � 16.26 0.71 0.41 0.38 0.38 0.38

(a)

(b) 
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Fig. 13  Truss structure: a 3D truss model, b Cross-section shape

low damage ( )

high damage ( )

moderate damage ( )

Fig. 14  Damage condition of the truss

Fig. 15  Damage identification results for the truss structure
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a damaged member. It is probably because other members 
around it are damaged as well (members 10, 45, and 50). 
However, the proposed method using Bayesian theory can 
correctly identify it as an intact member.

5.3  3D building

5.3.1  Building model

In this section, a numerical 3D building is designed to verify 
the proposed method. All 27 components (green for 3 slabs, 
yellow for 12 beams, and blue for 12 columns) are labeled as 
in Fig. 16a. Each floor’s height is 3.25 m. The cross-section 

of the building’s columns is 0.25 × 0.25  m2, and the cross-
section of its beams is 0.25 × 0.33  m2. The thickness of 
3 slabs is 0.08 m. Both length and width of the slabs are 
2.50 m. According to the above parameters, the building is 
designed with 9.75 m height, 3 m length, and 3 m width.

The material of the building is concrete with Young’s 
modulus of 30 GPa, Poisson ratio of 0.24, and a density of 
1950 kg/m3. The concrete is simulated by the SOLID 65 
element in ANSYS. Each element has 8 nodes, and each 
node has 3 DOFs that are x, y, z translations. There are 708 
elements, 1822 nodes, and 5466 DOFs in total as shown 
in Fig. 16b. Each component labeled in Fig. 16a is treated 
as a substructure with the same label. The bottom of the 4 
columns (16 nodes) in the first floor is fixed.

5.3.2  Damage identification

In the simulation, harmonic excitations, similar to Eq. (27), 
are applied perpendicularly at the middle of each sub-
structure. For slabs, the excitation is exactly at the central 
point. The example excitations are shown in Fig. 16b by red 
arrows. In the excitation and the response, 5% white noises 
are added to simulate real-world problems. The damage 
factors are assumed as �(1) = 0.8 , �(6) = 0.5 , �(9) = 0.3 , 
�(12) = 0.7 ,  �(16) = 0.4  ,  �(18) = 0.1 ,  �(22) = 0.9 , 
�(26) = 0.6 , �(27) = 0.2 , �(others) = 1.0 . The damaged 
substructures include columns, beams, and slabs to make 
the simulation closer to real-world scenarios.

The first 3 natural frequencies of the damaged structure 
can be calculated as 4.0730 Hz, 5.1450 Hz, and 10.7662 Hz. 
The target frequency is selected as 3.0 Hz after an analysis 
discussed in Sect. 5.1.3. All estimated masses are utilized 
in the proposed iterative equations Eq. (16), Eq. (17), and 
Eq. (24). The mean value of � using Bayesian theory, �m and 
�� can be obtained as shown in Fig. 17.

Figure 17 confirms that all damaged substructures can be 
identified with an acceptable precision. But for some sub-
structures, the proposed Bayesian approach improves the 
precision of damage identification (such as substructures 5, 

(a) (b)
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24
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34
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13

14

15
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17
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21
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22

23

25

26
27

Excitation

Excitation

Excitation

Fig. 16  3D Building and its FE model: a Building components (sub-
structures), b FE model

Fig. 17  Damage identification results of the building
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8, 9, 14, 15, 16, 23, 24, 25, 26, 27). This shows that the 
proposed methods can have good applications in practical 
engineering.

6  Experiment of plane frame structure

6.1  Plane frame structure

As shown in Fig. 18, this section uses a 3-story frame to 
verify the proposed damage identification method.

The frame height is 0.3 m, the width is 0.295 m, the 
section height is 0.005 m, and the section width is 0.06 m. 
Young’s modulus of the material is 1.94 GPa and the 
density is 7850 kg/m3. The frame is divided into 9 sub-
structures, which are numbered as shown in Fig. 18. The 

notches shown in Fig. 18 are cut on the 2nd and the 9th 
substructure to simulate the damage by reducing the stiff-
ness without affecting the mass. The theoretical damage fac-
tor is � = [1, 0.71, 1, 1, 1, 1, 1, 1, 0.54] . A modal hammer is 
used to excite the frame, and the excitation time history is 
recorded. An acceleration sensor is installed at the position 
of the excitation to measure the response, as required by the 
proposed method.

6.2  Bayesian damage identification based 
on virtual mass estimation

In the experiment, the excitation is applied five times, 
successively to each substructure, and the corresponding 
responses of the substructure are obtained at the excita-
tion point. In each test, the hammer strike is required to be 
applied vertically at the position of the sensor, and during 
the excitation process, multiple strikes must be avoided. The 
sampling frequency is 10 kHz. Taking the first test for the 
first substructure as an example, the time-domain excita-
tion and the corresponding response are shown in Fig. 19. 
The FFT is then applied to determine the acceleration FRF 
shown in Fig. 20.

Different target frequencies are selected for each sub-
structure and listed in Table 6 (“Target Frequency”). They 
are determined using frequency reduction factors as dis-
cussed by Hou et al. (2020). Besides the target frequencies, 
Table 6 lists the respective additional virtual masses esti-
mated using Eq. (3) for each of the nine substructures in 
each of the five tests.

Sensor

Modal hammer

Fig. 18  Experimental model

(a) (b)

Fig. 19  Excitation and response of substructure 1 of the experimental frame: a excitation, b acceleration response

Fig. 20  Acceleration FRF of substructure 1 of the experimental frame
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The initial damage factors in the optimization process cor-
respond to the intact structure, �0 = [1, 1, 1, 1, 1, 1, 1, 1, 1] . 
The target frequencies listed in Table 6 are employed in the 
optimization process using the three methods described 
in this paper. The results are listed in Table 7. As in the 
numerical example and Table 3, �� denotes the damage fac-
tors identified using the frequency-based objective function 
Eq. (4), �m denotes the results obtained with the proposed 
mass-based objective function Eq.  (5), while the mean 
values and the standard deviations of the damage factors 
obtained with the Bayesian approach are listed as “Mean 
value of � ” and “Standard deviation of � .” Additionally, 
these results are compared with two results obtained earlier 
in the literature using two variants of the frequency-based 
approach; they are denoted in Table 7 by �′

�
 (deterministic 

approach) and �′ (frequency-based Bayesian approach).
Table 7 confirms that both the frequency residual and the 

mass residual can be used as an objective function to prop-
erly identify structural damage. The identification error in 
both cases is well within 4%. The results obtained using the 
mass-based Bayesian approach proposed here are similar to 
the results obtained using an earlier frequency-based Bayes-
ian damage identification. The identified standard deviations 
of the damage factors are different, but small in both cases. 

The error between the mean value and the theoretical value 
of the damage factor is also well within 4%, which meets the 
engineering needs.

7  Conclusion

The additional virtual mass method is used to obtain the 
response of a structure as if an additional mass was physi-
cally installed. It can be applied to increase the amount of 
available modal information, improve structural sensitivity 
to damage, and decrease the influence of unknown damp-
ing. However, its existing versions were based on natural 
frequencies, had relatively low computational efficiency, and 
could be influenced by measurement noise.

In this paper, a new objective function based on the 
residual of estimated masses is proposed, and an iterative 
identification approach is derived using the Bayesian frame-
work in order to accelerate optimization and improve the 
identification accuracy.

Numerical simulations of a simply supported beam, a 
3D truss structure, and a 3D building model show that the 
proposed method can accurately and efficiently identify the 
position and the degree of damages. The method developed 

Table 6  Target frequencies and 
the additional virtual masses 
estimated for each substructure 
in the five performed tests

Substructure Target frequency 
(Hz)

Estimated additional virtual mass (kg)

1 2 3 4 5

1 100 2.1239 2.1598 2.1460 2.1448 2.1698
2 110 0.8545 0.9065 0.8952 0.8642 0.8826
3 90 2.3836 2.6984 2.5809 2.8943 2.7097
4 90 2.0485 2.3208 2.3656 2.3413 2.3550
5 90 1.7115 1.7202 1.7046 1.731 1.6766
6 90 1.5888 1.6077 1.5914 1.5971 1.5960
7 93 1.0892 1.0930 1.1053 1.0893 1.1507
8 87 1.0656 1.3665 1.2940 1.3149 1.2580
9 97 0.3315 0.3618 0.3415 0.3439 0.3612

Table 7  Damage identification 
results (experimental 
verification)

�′
�
 is calculated in Fig. 17 (tuned model using m∗ ) of reference Hou et al. (2020)

The mean value and standard deviation of �′ are calculated in Table 6 of reference Hou et al. (2018)

Substructure 1 2 3 4 5 6 7 8 9

Theoretical value 1.0000 0.7100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5400
�� 1.0000 0.6852 0.9923 0.9755 1.0000 1.0000 1.0000 1.0000 0.5103
�
m

1.0000 0.6807 0.9607 0.9625 1.0000 0.9828 0.9947 0.9867 0.5118
�′
�

1.0000 0.6700 0.9670 0.9500 1.0000 1.0000 0.9760 1.0000 0.4910
Mean value of � 1.0000 0.6818 0.9656 0.9648 0.9923 0.9726 0.9736 0.9913 0.5261
Standard deviation of � 0.0082 0.0071 0.0236 0.0217 0.0109 0.0091 0.0131 0.0363 0.0086
Mean value of �′ 1.0000 0.6900 0.9800 0.9600 0.9800 0.9700 1.0000 1.0000 0.5100
Standard deviation of �′ 0.0067 0.0050 0.0091 0.0057 0.0067 0.0059 0.0062 0.0060 0.0065
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using the Bayesian theory is the most accurate and time 
efficient. The lab frame structure verifies the effectiveness 
and practical applicability of the method in an experimental 
scenario.

The research is ongoing to extend the analysis to fully 
continuous structures, which can further improve the identi-
fication accuracy, and to include various models of structural 
damage.
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