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ABSTRACT

Despite the widespread adoption of data-driven Structural Health Monitoring (SHM) systems, they 
may in fact be vulnerable. This paper demonstrates, from an attacker's perspective, how to hack a 
deep learning (DL)-based bridge SHM system perturbing healthy signals to appear as damaged or 
vice versa, disguising damaged signals as healthy. They can result in misclassification by the model, 
thereby fooling the SHM system. Its significance lies not only in raising concerns about the 
vulnerability of SHM systems but also in giving meaning to a new field, the defence of SHM systems. 
The paper first proposes a Principal Feature Attack (PFA) algorithm that seeks moderate alterations to 
the most influential features within physical constraints to attack the model, which is a black-box 
attack algorithm. It then conceptualizes a hacker vehicle that, by passing over the bridge, indirectly 
edits the bridge vibration signals through the Vehicle-Bridge Interaction (VBI) process, thus 
physically and unauthorizedly writing adversarial alterations into the system. Through a typical case 
study of a traffic event-based bridge SHM, the method's performance is evaluated. The results prove 
the method to be effective in both nontarget and target attacks on the SHM system, with the 
modifications being visually similar to the original and comply with physical constraints, making 
them hard to detect. The general effectiveness of the method is demonstrated through attacks on 
different DL models, where complex models appear more vulnerable to this threat.

Keywords: structural health monitoring, hacker vehicle, adversarial attack, deep learning, neural 
network, vehicle-bridge interaction.

1. Introduction

As a crucial component of transportation infrastructure, bridges play a vital role in social and 
economic development. However, over time, the safety and durability of bridge structures have 
become a global concern. For instance, in the United States, more than 42% of bridges have been in 
use for over half a century, with approximately 7.5% exhibiting structural deficiencies [1]. In Europe, 
most bridges were constructed between 1945 and 1965, many of which are now showing signs of 
aging and degradation [2]. Therefore, timely assessment of structural conditions to ensure safety is 
essential. Nonetheless, traditional methods of visual inspections are not only labour-intensive but also 
incapable of detecting internal damage [3]. To address this issue, SHM approaches based on sensing 
technologies have been proposed and seen increasing application in bridge structures over the past 
few decades [4,5]. 

Vibration-based SHM is an area that has garnered widespread attention. Depending on the damage 
indicators used, the mainstream methods can be categorized into modal parameter-based methods and 
data-driven methods. Changes in bridge modal parameters (such as frequency and mode shapes) can 
indicate structural damage, and these methods are known as modal parameter-based methods [6]. 
However, many such techniques struggle to detect minor damage, and modal parameter-based 
methods can be subjective, relying on expert knowledge, and are at risk of human bias, conflicting 
with the trend of automatic SHM in smart cities [7,8].

In recent years, with the rapid development of artificial intelligence (AI), data-driven methods have 
sharply become a mainstream area. They typically rely on large datasets and machine learning (ML) 
models such as Support Vector Machines (SVMs) and Neural Networks (ANNs) [9]. Current research 
hotspots focus on DL models, with progress chiefly concentrated on improving detection accuracy, 
developing real-time monitoring algorithms, and training models to distinguish changes related to 
damage from those caused by temperature fluctuations or other external factors [8]. Although they 
usually lack detailed physical interpretabilities, their high precision and efficiency have made them 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4766247

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



2

widely sought after [10–15]. They are inevitably integrating into urban infrastructure monitoring, 
becoming an indispensable part of smart cities.

However, data-driven SHMs, including DL models, can be quite vulnerable. Research in the field of 
ML has demonstrated that adding imperceptible perturbations to a target objective can render models 
like ANNs ineffective; this is known as adversarial attacks [16]. In the field of autonomous driving, 
this could lead to erroneous driving manoeuvres (e.g., due to incorrect traffic sign recognition), 
resulting in traffic accidents [17]. In the realm of banking asset management, it could lead to 
misrecognition of client identity, thereby causing financial loss [18]. This is also true in the field of 
bridge health management; for instance, maliciously classifying a damaged structure as healthy is of 
serious concern. If undetected, such types of attacks could lead to deterioration in structural health or 
even critical failures. Similarly, unnecessary maintenance and inspections resulting from falsely 
labelling a healthy structure as damaged could impose financial toll, and repeated misclassifications 
could undermine confidence in the monitoring systems [19]. To make matters worse, unlike tasks 
such as image recognition, many SHM tasks are not intuitive, and it is difficult for humans to identify 
damage solely by observing the measurement signals from structures. This means that attacks on 
SHM systems are even harder to detect. Either scenario could potentially cripple the system.

A direct application may be military-purpose SHM attacks, for example, strategically attacking target 
SHM systems. Notable large-scale system deployments, such as the Integrated Condition Assessment 
System (ICAS) utilized by the U.S. Navy [20], can be potential targets. However, the authors' 
intention is primarily to prompt engineers and researchers to be aware of the malicious attack and the 
vulnerability of SHM system itself, and to adopt appropriate preventative measures before tragedies 
occur. Recognizing the existence of human attacks, knowing the potential harm they can cause, and 
understanding of the methodologies of them are the keys to formulating defence strategies. A good 
defender should think from the perspective of an attacker.

Classic adversarial attacks typically require the attacker to have full access to the system. This may 
include model structure, parameters, and gradient information, as well as access to the training data, 
inputs, and outputs; this is known as a white-box attack [21]. Considering the complexity and 
responsibility of SHM systems, one strategy to guard against sub-standard SHM implementations is to 
mandate transparency in these systems, whereby their designs should be made publicly available. This 
makes white-box attacks on SHM systems somewhat feasible, not to mention the insider threats. On 
the other hand, even if an attacker only has access to the inputs and outputs of an SHM system, 
without any knowledge of the inner workings of the model, attacks are still possible; these are known 
as a black-box attack [22]. The methods often involve algorithms seeking sufficiently minor 
alterations to the model or the samples that can lead to misclassification by the model [16,21]. These 
are adversarial attacks in the context of data science. If that were the case, exploring these attacks and 
developing corresponding defence strategies seem to be the tasks of data/computer science 
researchers.

However, adversarial attacks in SHM engineering are even more complex due to several reasons:

 Physical constraints - In SHM engineering, the uncertainties in data (e.g., environmental noise) 
may mask minor adversarial alterations; whereas alterations that exceed the physical response to 
normal events might be immediately discovered (if the system has an alert for it), even though 
these changes are not visually significant in the data itself. Adversarial modifications need to 
comply with physical constraints.

 Data modification difficulties - Current adversarial attacks generally assume that the input sample 
data, like an image to be recognized, can be directly (or conveniently) modified; adversarial 
alterations can be easily added to the system. However, unlike data/computer science, in SHM 
engineering, outside attackers do not have the authority to directly insert/alter sample data, as the 
model acquires them straight from the structural responses.

This paper demonstrates, from an attacker's perspective, how to hack a data-driven bridge SHM 
system (a DL network in this study). It attempts to fool an event-based bridge monitoring system, 
where sensors on the bridge collect vibration data from the bridge structure, induced by traffic events. 
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The ML model is trained through a dataset established from the collected data and predicts newly 
acquired data. This is a common practice in bridge SHM, such as the monitoring of the Sydney Bridge 
by Diez et al [23]. The authors proposed an attack algorithm targeting principal features (PFs) and a 
hacker vehicle as a tool for "editing" bridge signals, perturbing healthy signals to appear as damaged 
or vice versa, disguising damaged signals as healthy. They can result in misclassification by the model, 
thereby fooling the SHM system. The contributions of this paper are mainly in the following areas:

 Proposal of a novel black-box PFA algorithm - It first eavesdrops on the model, identifying the 
features that most significantly impact the results (i.e., PFs) through feature perturbation, and then 
employs the Particle Swarm Optimization (PSO) algorithm to seek PF alterations that maximize 
the model's prediction error within physical constraints.

 Conceptualization of a hacker vehicle - Based on the results of the PFA algorithm, an exciter is 
designed and installed on a vehicle. As it passes over the bridge, it influences bridge vibrations 
through the VBI process, thereby indirectly editing the bridge vibration signals. It unauthorizedly 
writes adversarial alterations into the system.

 Demonstration of the method's effectiveness - Through a case of data-driven bridge SHM, it 
demonstrates how to physically hack an SHM system using the proposed method. To the best of 
the authors' knowledge, this is the first attempt at either computer science or civil engineering. Its 
significance lies not only in raising concerns about the vulnerability of SHM systems but also in 
giving meaning to a new field, the defence of SHM systems.

2. A case of data-driven bridge SHM

2.1. Event-based bridge SHM
This section introduces a typical data-driven event-based bridge SHM system as illustrated in Fig. 1. 
It comprises three key components: data collection, model training, and assessment of structural 
condition. The structural responses caused by passing vehicles (referred to events) are directly 
collected from the mid-span sensor on a simply supported bridge. In the data collection phase, a data 
truncation window is employed to capture a 5-second data segment following a vehicle's entry onto 
the bridge. Data segments shorter than 5 seconds are automatically zero-padded to maintain consistent 
length. To guarantee the model's robustness against diverse vehicles and noise, an ample and varied 
dataset is amassed. This dataset encompasses traffic events that cover a wide range of vehicle 
parameters and environmental noises. The data are then pre-processed to transform into frequency 
domain data, forming a group of vectors that can be fed into an ML model. These vectors are stored in 
dataset 𝓓 = [𝒅𝟏, 𝒅𝟐,𝒅𝟑,…,𝒅𝒏𝒕], where 𝑛𝑡 is the number of traffic events. In this study, attention will be 
given to frequency domain signals, as humans can more intuitively discern changes in structural 
conditions from frequency, compared to time domain signals. 

In the model training phase, this study opts for the popular Convolution Neural Network (CNN) 
models, particularly the 1D-CNN model, which is considered one of the most effective neural 
networks for extracting damage-sensitive features from signals [24]. A typical CNN comprises 
convolutional layers, pooling layers, a flatten layer, a connected layer, and a softmax output layer [25]. 
The softmax layer is utilized to form different probability values of being different classes, as 
described in Equation (1). The detailed configuration of the model and the training process will be 
discussed in Section 2.3.

𝑃𝑖 =
𝑒𝑧𝑖

∑𝐶
𝑗=1 𝑒𝑧𝑗

#(1)

where 𝑧𝑖 represents the input to the softmax layer, and 𝑃𝑖 denotes the probability of the sample 
belonging to the 𝑖-th class with a total of 𝐶 classes.

In the condition assessment phase, data 𝒙 from a new traffic event, after preprocessing, is input into 
the trained model ℳ. It produces a probability vector 𝒚. This output vector 𝒚 is of the form:

𝒚 = ℳ(𝒙) = {𝑃1,𝑃2,𝑃3,…,𝑃𝐶}#(2)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4766247

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



4

where each element 𝑃𝑖 in the vector 𝒚 represents the probability that the input 𝒙 belongs to the 𝑖-th 
label out of a total of 𝐶 labels. The model's prediction is determined by the label corresponding to the 
highest probability in the 𝒚. 

Fig. 1 Data-driven SHM framework.

2.2. VBI model and dataset
2.2.1 VBI model
The SHM system will be demonstrated on a simulated dataset. The following briefly introduces the 
simulation of bridges and vehicles, as well as the bridge vibrations induced by traffic events (the 
passages of vehicles). For the bridge model, it is simulated using a simply supported Euler-Bernoulli 
(EB) beam. Its finite element (FE) model consists of nodes, each with two degrees of freedom (DOF): 
vertical translation and rotation. The model consists of 𝑛 elements, 𝑛 + 1 nodes, and 2𝑛 DOFs 
(excluding the vertical constraints at both ends). The length of the bridge is 𝐿, with a uniform flexural 
rigidity of 𝐸𝐼 and a mass per unit length of 𝑚. Additionally, the damping of the bridge is 
approximated by mass-stiffness proportional Rayleigh damping. As for the vehicle model, it is 
simulated by 2-DOF quarter-car model (or representing the vehicle's rear axle system), a 
simplification has been adopted in many previous studies [26–29]. As illustrated in Fig. 2, the VBI 
process for a traffic event, a car traversing the bridge, is governed by the following equations:

𝑴𝒗𝒔𝒗 + 𝑪𝒗𝒔𝒗 + 𝑲𝒗𝒔𝒗 = 𝒇𝒄𝒗#(3)
𝑴𝒃𝒔𝒃 + 𝑪𝒃𝒔𝒃 + 𝑲𝒃𝒔𝒃 = 𝒇𝒄𝒃#(4)

Equations (3) and (4) represent the equations of motion pertinent to the vehicle and the bridge, 
respectively. The matrices 𝑴𝒗, 𝑪𝒗, and 𝑲𝒗 are indicative of the mass, damping, and stiffness of the 
vehicle, while 𝑴𝒃, 𝑪𝒃, and 𝑲𝒃 denote the mass, damping, and stiffness matrices for the bridge. The 
terms 𝒔𝒗 and 𝒔𝒃 signify the displacement vector of the vehicle and the nodal displacement of the 
bridge system, respectively. Moreover, 𝒇𝒄𝒗 and 𝒇𝒄𝒃 are the time-dependent interaction forces exerted 
on the vehicle and the bridge, respectively.
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Fig. 2 VBI model.

For the vehicle model in this study, the body and axle masses are represented by 𝑚𝑣 and 𝑚𝑡, the 
suspension and tire damping are indicated by 𝑐𝑠 and 𝑐𝑡, and the suspension and tire stiffnesses are 
denoted by 𝑘𝑠 and 𝑘𝑡. The vertical displacements of the vehicle body and axle are symbolized by 𝑢𝑣 
and 𝑢𝑡, respectively. 

𝑴𝒗 = [𝑚𝑣
𝑚𝑡]#(5)

𝑪𝒗 = [ 𝑐𝑠 ―𝑐𝑠
―𝑐𝑠 𝑐𝑠 + 𝑐𝑡]#(6)

𝑲𝒗 = [ 𝑘𝑠 ―𝑘𝑠
―𝑘𝑠 𝑘𝑠 + 𝑘𝑡]#(7)

𝒔𝒗 = {𝑢𝑣 𝑢𝑡}𝑇#(8)
Road roughness is generated in accordance with ISO 8608 [30], with the roughness coefficient 𝐺𝑑
(𝑛𝑠,0) = 16 × 10―6 𝑚3 (Class A). It is noteworthy that in the simulations of this study, the road 
roughness for each traffic event varies (unfixed random seed), reflecting the realistic scenario where 
different vehicles traverse varying trajectories and road surfaces. Furthermore, 5% Gaussian noise is 
added to the vibration data to simulate environmental effects [31]. The VBI process is solved using 
the Newmark-Beta method (𝛽 = 0.25, 𝛾 = 0.5). Further details about road roughness, noise, and the 
VBI process can be referred to the reference [27,32].

2.2.2 Dataset establishment
In this study, the bridge's parameters are as follows: mass per unit length 𝑚 = 2400 𝑘𝑔/𝑚, flexural 
rigidity 𝐸𝐼 = 5.5 × 109 𝑁 ⋅ 𝑚2, length 𝐿 = 25 𝑚. It is divided into 10 elements (𝑛 = 10), with each 
length 𝑙 = 2.5 𝑚 (see Fig. 3). These parameters only present a short-span bridge example here, but the 
methodological framework is not limited to a specific bridge. Generally, bridge damage can be 
considered as a loss of stiffness [33], as shown in Equation (9). This can be used to represent the 
bridge damage such as cracks and delamination [34]. In the equation, 𝑅𝑖

𝐷 represents the damaged 
element; 𝑅𝑖

𝐻 denotes the intact element; 𝜇 represents the reduction coefficient in the 𝑖-th element (i.e., 
damage location). 

𝑅𝑖
𝐷 = 𝜇 × 𝑅𝑖

𝐻#(9)

Fig. 3 Bridge model.
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Traffic events should be diverse. There is a vehicle passing through the bridge (e.g., a minibus) with 
the following parameters: 𝑚𝑝

𝑣 = 1.28 × 104 𝑘𝑔, 𝑚𝑝
𝑡 = 1.0 × 103 𝑘𝑔, 𝑐𝑝

𝑠 = 1.0 × 103 𝑁 ⋅ 𝑠/𝑚, 𝑐𝑝
𝑡 = 0, 

𝑘𝑝
𝑠 = 4.0 × 105 𝑁/𝑚, 𝑘𝑝

𝑡 = 3.5 × 105 𝑁/𝑚, and 𝑣𝑝 = 8 𝑚/𝑠. Assuming the parameters of the cars 
passing over the bridge follow a normal distribution corresponding to this vehicle, its parameters for 
the 𝑖-th traffic event would be: 

𝑽𝒊~𝒩{𝑽𝒑,diag[(𝑽𝒑

4 )
2]}#(10)

where 𝑽𝒊 = {𝑚𝑖
𝑣, 𝑚𝑖

𝑡,𝑐𝑖
𝑠,𝑐𝑖

𝑡,𝑘𝑖
𝑠,𝑘𝑖

𝑡,𝑣𝑖}𝑇, and 𝑽𝒑 = {𝑚𝑝
𝑣, 𝑚𝑝

𝑡 ,𝑐𝑝
𝑠 ,𝑐𝑝

𝑡 ,𝑘𝑝
𝑠 ,𝑘𝑝

𝑡 ,0.4𝑣𝑝}𝑇. 𝒩 denotes a multivariate 
normal distribution. The relatively small variance in speed is attributed to the fact that bridge traffic 
typically adheres to speed limits. Additionally, each traffic event incorporates 5% environmental 
noise and random road roughness to ensure the robustness of the results against these factors. The 
sampling rate is 1000 Hz (or the time step is 0.001 s). For different damage cases (DCs), each DC 
consists of 1000 traffic events, forming a database. Details of this can be referenced in Table 1. They 
are then randomly divided into training and testing sets at a 9:1 ratio.

Table 1 Dataset of DCs
DCs Label Description Runs
DC 0 0 Healthy 1000
DC 1 1 Damage on 5-th element, μ = 0.6 1000
DC 2 2 Damage on 5-th element, μ = 0.7 1000
DC 3 3 Damage on 5-th element, μ = 0.8 1000
DC 4 4 Damage on 5-th element, μ = 0.9 1000
DC 5 5 Damage on 1-st element, μ = 0.5 1000
DC 6 6 Damage on 3-rd element, μ = 0.5 1000
DC 7 7 Damage on 5-th element, μ = 0.5 1000
DC 8 8 Damage on 7-th element, μ = 0.5 1000
DC 9 9 Damage on 9-th element, μ = 0.5 1000

2.3. DL model and performance
As labels are available for the dataset, the CNN model can be trained in a supervised manner. After 
some trials by the authors, a 1D-CNN architecture that performs well for this study's dataset is 
illustrated in Table 2. Notably, it utilizes LeakyReLU instead of ReLU as the activation function for 
convolutional layers, which has been shown to avoid neuron death and gradient vanishing issues, 
thereby enhancing the model's accuracy [35]. Its function is defined as follows (negative slope=0.001):

LeakyReLU (𝑥) = {  𝑥,  if 𝑥 ≥ 0
 0.001𝑥, otherwise #(11)

Table 2 CNN configurations
Layer Output shape Parameter Activation

Conv1d 2500 × 64 Kernel number: 64; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Max pooling 1250 × 64 Kernel: 2; Stride: 2 None

Conv1d 1250 × 128 Kernel number: 128; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Max pooling 625 × 128 Kernel: 2; Stride: 2 None

Flatten 80000 None None
Dense 30 None LeakyReLU
Dense 10 None Softmax

The model training was conducted in a Python 3.11 environment using TensorFlow [36]. In addition 
to the above architecture, the hyperparameters guiding the behaviour of the CNN were chosen in this 
manner: a batch size was set at 32, Adam was used as the optimizer, the learning rate was 1 × 10―4, 
the employed loss function was "Cross-Entropy Loss", and the total number of training epochs was 
200. The accuracy can be calculated by [37]:
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Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 #(12)
where TP, FP, TN, and FN represent "True Positive", "False Positive", "True Negative", and "False 
Negative", respectively. The loss and accuracy during the model's training and testing phases are 
illustrated in Fig. 4 (i.e., training history). Evidently, the CNN achieved relatively high testing 
accuracy (> 0.9). It stabilized around 50 epochs, and based on the test loss trend, there are no apparent 
overfitting issues. 

Fig. 4 Training history for CNN.

Fig. 5 indicates that the model's suboptimal predictions are primarily on distinguishing between 
small-scale damage (DC 4) and its adjacent state (DC 3), as well as the healthy state (DC 0), due to 
their high similarity in signals. Nonetheless, the accuracy in these cases remains above 75%. For the 
other DCs, model ℳ performs quite well (e.g., 100% accuracy on DC 6 and DC 9). The overall 
accuracy stands at 91.2%.
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Fig. 5 Confusion matrix.

3. Attack on SHM

In this section, we will present the proposed PFA algorithm and the conceptualization of the hacker 
vehicle, aiming at fooling an SHM system. The innovation of PFA algorithm lies in its approach of 
seeking moderate alterations to the first few features that have the greatest impact on the model results, 
rather than looking for the smallest modification in every feature as many algorithms in computer 
science do [16]. Because minimal modifications can be masked by physical uncertainties such as 
noise etc. It also diverges from methods like the One-pixel attack [38], which makes substantial 
changes to a single feature, changes that can easily be detected as anomalous data; their modifications 
should comply with physical constraints (in this case, less than the physical response from normal 
events). Moreover, the method is simple and efficient. The concept of the hacker vehicle here is that it 
acts as an editing tool for bridge vibration data, indirectly writing targeted alterations into the samples; 
this gives a new idea for unauthorized outsider attack.

3.1. PFA algorithm
The attack on the SHM system is conducted in a black-box manner. This means, for model ℳ trained 
above, information such as training history or gradients is not available, and the model can only be 
accessed on an input–output basis. This is a scenario of an outsider hacking an SHM system. The first 
step is to eavesdrop on the model, that is, to listen each signal input and its output 𝒚 = ℳ(𝒙). It 
should be noted that here 𝒙 is the pre-processed frequency domain data. Let 𝒙𝒊[𝑓𝑗] denote the 
frequency 𝑓𝑗 of the 𝑖-th signal vector. Subsequently, the envelope of the observed traffic events can be 
listened, determined by two vectors 𝒆𝒏𝒗𝒎𝒂𝒙 and 𝒆𝒏𝒗𝒎𝒊𝒏, each with a frequency range of 0-500 Hz 
(𝑗 = 1, 2, 3,…, 2500), where:

𝒆𝒏𝒗𝒎𝒂𝒙[𝑓𝑗] = 𝑚𝑎𝑥({𝒙𝒊[𝑓𝑗]}𝑞
𝑖=1)#(13)

𝒆𝒏𝒗𝒎𝒊𝒏[𝑓𝑗] = 𝑚𝑖𝑛({𝒙𝒊[𝑓𝑗]}𝑞
𝑖=1)#(14)

The second step is to identify the PFs, through feature perturbation. The proposed PFs pick-up 
algorithm is detailed in Algorithm 1: for each frequency (feature), 𝑓𝑗, of the 𝑖-th sample, 𝒙𝒊, it adds 
Gaussian noise with a standard deviation of 𝜂 into the amplitude, 𝒙𝒊′[𝑓𝑗], and captures the model's 
prediction, 𝒚𝒊′. The impact of each feature is quantified by the absolute change in model prediction, 𝑰𝒊, 
and averaged over the perturbed samples, 𝑰𝒂𝒗𝒈. Features are then ranked based on their impact, 𝑰𝒊𝒅𝒙, 
and the top 𝑇 features are encored into an array, 𝒑 = {𝑓𝑃𝐹

1 ,𝑓𝑃𝐹
2 ,𝑓𝑃𝐹

3 ,…,𝑓𝑃𝐹
𝑇 }. 

Algorithm 1 PFs pick-up algorithm
Require: Model ℳ and samples 𝑿 = [𝒙𝟏, 𝒙𝟐,𝒙𝟑,…,𝒙𝒒]
Require: Original prediction 𝒀 = ℳ(𝑿) = [𝒚𝟏, 𝒚𝟐,𝒚𝟑,…,𝒚𝒒]
Require: Noise level 𝜂 (0.001)
𝑰←[]
For sample 𝒙𝒊 in 𝑿: 

𝑰𝒊←{}
For 𝑓𝑗 in 𝒙𝒊: 

𝒙𝒊′[𝑓𝑗]←𝒙𝒊[𝑓𝑗] + 𝒩(0,𝜂2)
𝒚𝒊′←ℳ(𝒙𝒊′)
𝑰𝒊←𝑰𝒊 ∪ (|𝒚𝒊 ― 𝒚𝒊′|)

𝑰←𝑰 ∪ 𝑰𝒊
𝑰𝒂𝒗𝒈←𝑚𝑒𝑎𝑛(𝑰)
𝑰𝒊𝒅𝒙←𝑎𝑟𝑔𝑠𝑜𝑟𝑡( ― 𝑰𝒂𝒗𝒈)
𝒑←𝑰𝒊𝒅𝒙[:𝑇]
Return 𝒑
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The third step is to seek PF alterations that maximize the model's prediction errors using the PSO 
optimizer, where physical constraints are imposed. PSO is an optimization technique inspired by the 
social behaviours of birds and fish, particularly used for finding optimal solutions within a defined 
search space. Detailed information about the PSO method can be found in reference [39]. Attacks on 
PFs can be categorized into nontarget and target attacks. Nontarget attacks aim to cause the model to 
make any incorrect classification, without specifying what the incorrect classification should be. The 
goal is simply to ensure the model does not produce the correct result. Target attacks aim to mislead 
the model into classifying an input as a specific, incorrect category. A typical nontarget attack can 
fool an SHM system to diagnose a healthy bridge as damaged. The proposed nontarget attack 
algorithm is described in Algorithm 2: For a sample from vehicle#0, denoted as 𝒙𝟎, with the 

configuration of 𝑽𝟎 (𝑽𝟎~𝒩{𝑽𝒑,diag[(𝑽𝒑

4 )2]}), construct the objective function 𝐹(𝒙) = ℳ(𝒙𝟎′)𝐿𝑎𝑏_𝑜𝑟𝑖, 

where ℳ is the model, and for 𝑓𝑃𝐹
𝑖 ∈ 𝒑, 𝒙𝟎′[𝑓𝑃𝐹

𝑖 ] = 𝒙, while all other components remain unchanged. 
𝐿𝑎𝑏_𝑜𝑟𝑖 represents its original label. Physical constraints in this study are the envelope of observed 
traffic events 𝒆𝒏𝒗𝒎𝒂𝒙, 𝒆𝒏𝒗𝒎𝒊𝒏, ensuring that the alterations are within the normal physical responses. 
It should be noted that considering an exciter will be used to physically reproduce these alterations 
below, it cannot achieve negative vibration changes. Thus, 𝑚𝑎𝑥(𝒆𝒏𝒗𝒎𝒊𝒏[𝑓𝑃𝐹

𝑖 ],𝒙𝟎[𝑓𝑃𝐹
𝑖 ]) should be 

adopted as the physical lower limit, 𝒍𝒃. PSO seeks the optimal solution 𝒙𝒐𝒑𝒕 =
{𝒙𝟎′[𝑓𝑃𝐹

1 ],𝒙𝟎′[𝑓𝑃𝐹
2 ],𝒙𝟎′[𝑓𝑃𝐹

𝑖 ],…,𝒙𝟎′[𝑓𝑃𝐹
𝑇 ]} within these constraints to minimize the prediction probability 

of the original label:
𝑚𝑖𝑛

{𝑓𝑃𝐹
𝑖 ∈ 𝒑}

𝑃𝐿𝑎𝑏_𝑜𝑟𝑖(M(𝒙𝟎) = 𝒚𝟎|𝒙𝟎′[𝑓𝑃𝐹
𝑖 ]) #(15)

For a target attack, a typical case is to fool an SHM system to diagnose a damaged bridge as healthy, 
which could pose a greater risk than the above. The proposed target attack algorithm is described in 
Algorithm 3: The difference between it and Algorithm 2 is that its objective function is ―𝐹(𝒙) = ℳ
(𝒙𝟎′)𝐿𝑎𝑏_𝑡𝑎𝑟, where 𝐿𝑎𝑏_𝑡𝑎𝑟 is the target fake label. The purpose is to seek the optimal solution 𝒙𝒐𝒑𝒕 to 
maximize the prediction probability of model ℳ for 𝐿𝑎𝑏_𝑡𝑎𝑟:

m𝑎𝑥
{𝑓𝑃𝐹

𝑖 ∈ 𝒑}
𝑃𝐿𝑎𝑏_𝑡𝑎𝑟(M(𝒙𝟎) = 𝒚𝟎|𝒙𝟎′[𝑓𝑃𝐹

𝑖 ]) #(16)

Algorithm 2 Nontarget attack on PFs
Require: Model ℳ
Require: Sample from the vehicle#0 𝒙𝟎
Require: Envelope of observed traffic events 𝒆𝒏𝒗𝒎𝒂𝒙, 𝒆𝒏𝒗𝒎𝒊𝒏
Require: PSO optimizer
Require: PFs 𝒑
Define the objective function 𝐹(𝒙) = ℳ(𝒙𝟎′)𝐿𝑎𝑏_𝑜𝑟𝑖:

𝒙𝟎′[𝑓𝑃𝐹
𝑖 ] = 𝒙 𝑓𝑜𝑟 𝑓𝑃𝐹

𝑖 ∈ 𝒑 
𝒙𝟎′[𝑓𝑖] = 𝒙𝟎[𝑓𝑖] 𝑓𝑜𝑟 𝑓𝑖 ∉ 𝒑 

# Physical constraints
𝒍𝒃←𝑚𝑎𝑥(𝒆𝒏𝒗𝒎𝒊𝒏[𝑓𝑃𝐹

𝑖 ],𝒙𝟎[𝑓𝑃𝐹
𝑖 ]) 𝑓𝑜𝑟 𝑓𝑝

𝑖 ∈ 𝒑
𝒖𝒃←𝒆𝒏𝒗𝒎𝒂𝒙[𝑓𝑃𝐹

𝑖 ] 𝑓𝑜𝑟 𝑓𝑃𝐹
𝑖 ∈ 𝒑

Execute PSO to find 𝒙𝒐𝒑𝒕:
𝒙𝒐𝒑𝒕←𝑃𝑆𝑂[𝐹(𝒙),𝒍𝒃,𝒖𝒃]

Return 𝒙𝒐𝒑𝒕
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3.2. Hacker vehicle
The concept of a hacker vehicle is here introduced, which, based on the results of the PFA algorithm, 
has an exciter designed and installed on it (see Fig. 6). As the vehicle passes over the bridge, it 
influences bridge vibrations through VBI process, thereby physically and unauthorizedly writing 
adversarial alterations into the system. Another advantage of using a hacker vehicle is that it is 
sufficiently concealed. For example, directly exciting the bridge with an on-site vibrator would be an 
action easily discovered. 

Fig. 6 Exciter on the vehicle.

For the optimal solution 𝒙𝒐𝒑𝒕 of PFs, its original values 𝒙𝟎[𝒑], and the upper physical limit 𝒆𝒏𝒗𝒎𝒂𝒙
[𝒑], we can define an index vector 𝝌, as shown in Equation (17), which has a length of |𝒑|. We then 
select the elements whose values are 1 from 𝝌 to form a new vector 𝜿 (see Equation (18)). This is 
because minor adversarial changes would be obscured by the uncertainties of the physical process 
itself, and we select the largest alterations permissible within physical constraints. κ is the target 
frequencies of action for the exciter, and 𝒙𝒐𝒑𝒕[𝜿] represents the target amplitudes to be reconstructed 
using the exciter.

𝝌 =
𝒙𝒐𝒑𝒕 ― 𝒙𝟎[𝒑]

𝒆𝒏𝒗𝒎𝒂𝒙[𝒑] ― 𝒙𝟎[𝒑] #(17)

𝜿 = {𝑓𝑞|𝝌[𝑓𝑞] = 1,𝑓𝑞 ∈ 𝒑}#(18)
The vibration of the exciter is controlled by Equation (19). In the equation, 𝑨 represents the set 
amplitudes corresponding to 𝜿.

𝜞 = 𝑨 𝑐𝑜𝑠(2𝜋𝜿𝑡) #(19)
𝜞 can be incorporated into the VBI process as part of the vehicle force. According to the authors' trials, 
the amplitudes at the target frequencies of the bridge 𝒙𝜿 exhibits a rough linear relationship with the 
set amplitudes 𝑨, which will be shown in the following sections. It can be described as:

𝒙𝜿 ≈ 𝜷𝟎 + 𝜷𝟏𝑨 + 𝜺#(20)

Algorithm 3 Target attack on PFs
Require: Model ℳ
Require: Sample from the vehicle#0 𝒙𝟎
Require: Envelope of observed traffic events 𝒆𝒏𝒗𝒎𝒂𝒙, 𝒆𝒏𝒗𝒎𝒊𝒏
Require: PSO optimizer
Require: PFs 𝒑
Require: Target label index 𝐿𝑎𝑏_𝑡𝑎𝑟
Define the objective function 𝐹(𝒙) = ―ℳ(𝒙𝟎′)𝐿𝑎𝑏_𝑡𝑎𝑟:

𝒙𝟎′[𝑓𝑃𝐹
𝑖 ] = 𝒙 𝑓𝑜𝑟 𝑓𝑃𝐹

𝑖 ∈ 𝒑 
𝒙𝟎′[𝑓𝑖] = 𝒙𝟎[𝑓𝑖] 𝑓𝑜𝑟 𝑓𝑖 ∉ 𝒑 

# Physical constraints
𝒍𝒃←𝑚𝑎𝑥(𝒆𝒏𝒗𝒎𝒊𝒏[𝑓𝑃𝐹

𝑖 ],𝒙𝟎[𝑓𝑃𝐹
𝑖 ]) 𝑓𝑜𝑟 𝑓𝑝

𝑖 ∈ 𝒑
𝒖𝒃←𝒆𝒏𝒗𝒎𝒂𝒙[𝑓𝑃𝐹

𝑖 ] 𝑓𝑜𝑟 𝑓𝑃𝐹
𝑖 ∈ 𝒑

Execute PSO to find 𝒙𝒐𝒑𝒕:
𝒙𝒐𝒑𝒕←𝑃𝑆𝑂[𝐹(𝒙),𝒍𝒃,𝒖𝒃]

Return 𝒙𝒐𝒑𝒕
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where 𝜷𝟎 is the y-intercept vector of the regression, 𝜷𝟏 is the slope vector of the regression, and 𝜺 is 
the random error term, capturing deviations from the linear model due to uncertainties like road 
roughness and noise. They can be estimated using least squares regression.
So, 𝑨 can be calculated as:

𝑨 ≈
𝒙𝒐𝒑𝒕[𝜿] ― 𝜷𝟎 ― 𝜺

𝜷𝟏
#(21)

So far, a hacker vehicle equipped with an exciter, governed by the vibration function 𝜞, is set up. The 
following section will demonstrate its performance in fooling the SHM system. The process of 
attacking the SHM system is summarised in Fig. 7. 

Fig. 7 Attack on SHM.

4. Evaluation and results

The evaluation of the proposed attack method is based on the dataset acquired on Section 2. Attempts 
will be made to conduct both nontarget and target attacks, demonstrating how they hack a SHM 
system, as well as to explore the method's feasibility to different models.  

4.1. Nontarget attack
4.1.1 Demonstration of PFA algorithm
Nontarget attacks will be first on health status (DC 0), fooling the SHM system to diagnose a healthy 
sample as damaged. By listening to 100 samples from normal DC 0, an envelope graph, as illustrated 
in Fig. 8a (showing content from 0-100 Hz), can be obtained; it represents the boundary of bridge 
responses to normal traffic events. Meanwhile, based on these samples, the impact of frequency 
(feature) can be obtained using Algorithm 1, as shown in Fig. 8b. Note that the figure only displays 
content from 0-100 Hz, as other frequency features have minor impact. From a physical perspective, 
the first four frequencies of the bridge are respectively 3.8, 15.2, 34.2, and 60.8 𝐻𝑧. The figure 
reveals that features near these frequencies indeed receive more attention, but beyond these, many 
features are also given significant weights. This suggests that, on the one hand, ML models may be 
able to detect features other than physical modes, thereby having higher sensitivity to damage. On the 
other hand, the significance of these features may be worth exploring, as it relates to the model's 
trustworthiness.
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As shown in Fig. 9a, among all 2500 features corresponding to frequencies, only a few have a 
significant impact on the model result; they are the PFs we are looking for. As illustrated in Fig. 9b, 
by selecting the top ten influential features (𝑇 = 10), PFs can be obtained 𝒑 =
{32 𝐻𝑧,32.2 𝐻𝑧,31.8 𝐻𝑧,31.6 𝐻𝑧, 32.4 𝐻𝑧,31.2 𝐻𝑧,31.4 𝐻𝑧,  32.8 𝐻𝑧,32.6 𝐻𝑧, 31 𝐻𝑧}. 

 
                                         (a)                                                                                 (b)

Fig. 8 Attack on DC 0: (a) envelope of observed traffic events, (b) feature impacts.

 
                                         (a)                                                                                 (b)

Fig. 9 Selections of PFs: (a) all features, (b) top 10 features.

For the employed vehicle#0 (𝑽𝟎~𝒩{𝑽𝒑,diag[(𝑽𝒑

4 )2]}), its configuration is 𝑚0
𝑣 = 1.28 × 104 𝑘𝑔, 𝑚0

𝑡

= 1.0 × 103 𝑘𝑔, 𝑐0
𝑠 = 1.0 × 104 𝑁 ⋅ 𝑠/𝑚, 𝑐0

𝑡 = 0, 𝑘0
𝑠 = 4.0 × 105 𝑁/𝑚, 𝑘0

𝑡 = 3 × 105 𝑁/𝑚, and 𝑣0

= 8 𝑚/𝑠. Utilizing the signal of 𝑽𝟎 as input, the frequency response of the bridge and the model 
prediction can be obtained, as shown in Fig. 10a and Fig. 10b. It is observed that based on normal 
events as 𝑽𝟎 passes over the bridge, the model ℳ predicts with a 97.2% probability that the bridge 
condition is DC 0, i.e., the healthy state. However, for the adversarial result of 10 PFs using 
Algorithm 2, despite its frequency response being highly similar to the original, the model predicts 
with nearly 100% probability that it is DC 2 (damage on 5-th element, μ=0.7), as shown in Fig. 11a 
and Fig. 11b. This indicates the nontarget attack has worked very well. 
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                                           (a)                                                                                        (b)

Fig. 10 Original results: (a) frequency response, (b) model prediction.

                                           (a)                                                                                        (b)

Fig. 11 Adversarial results with 10 PFs: (a) frequency response, (b) model prediction.

Reducing the number of PFs, through trials, shows that a nontarget attack can be achieved with 
alterations in as few as 2 PFs, with the adversarial frequency change shown in Fig. 12a. Nontarget 
attacks on a minimal number of PFs tend to perturb the prediction to the label closest to the original 
(e.g., DC 4), as shown in Fig. 12b. Such adversarial modifications are even harder to detect. These 
findings highlight the vulnerability of data-driven SHM systems. The success rate of nontarget attacks 
is defined as the percentage of adversarial samples that have been successfully identified as an 
arbitrary target class. When using 10 PFs and considering all DCs, their confusion matrix is presented 
in Fig. 13a, with an overall success rate of 43.3%. It can be observed that although the bridge state 
DC 0 can be effectively disturbed to other DCs, some DCs remain robust against such attacks. As 
there is a clear difference in features between them; changing only a few features is insufficient to 
bridge this difference in the feature space. However, simply by increasing the number of PFs, that is, 
the dimensionality of the perturbation, this robustness can be easily broken, as shown in Fig. 13b. 
When using 100 PFs (4% of the total number of features), the success rate increases to 100%. In fact, 
the number of PFs can be further reduced, but this is not the focus of this work. So far, from a data 
science perspective, the SHM system has been hacked by the PFA algorithm. However, in practical 
engineering, it is a challenge to write these adversarial alterations into system samples; outside 
attackers usually lack such authorities. This leads to the concept of the hacker vehicle employed as a 
tool for editing bridge signals.
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                                           (a)                                                                                        (b)

Fig. 12 Adversarial results with 2 PFs: (a) frequency response, (b) model prediction.

                                           (a)                                                                                        (b)

Fig. 13 Confusion matrix for adversarial samples: (a) 10 PFs, (b) 100 PFs.

4.1.2 Demonstration of hacker vehicle
We install an exciter on vehicle#0 to construct a hacker vehicle, indirectly editing the bridge vibration 
signals through the VBI process. The exciter is controlled by Equation (19). As shown in Fig. 14, 
experimental trials reveal a roughly linear relationship between the bridge amplitudes for the top ten 
PFs and the exciter amplitude 𝑨. 

Fig. 14 Bridge amplitudes at PFs corresponding to the exciter amplitude 𝐴.

Based on Equations (17) to (21) and the output 𝒙𝒐𝒑𝒕 from Algorithm 2, it can be determined that:
𝜿 = {32, 31.6, 32.4, 31.4, 32.8, 32.6, 31}#(22)

𝑨 = {64.1360, 20.1116, 39.8875, 22.1657, 34.5457, 21.7874, 8.3988}#(23)
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They can be used to construct the exciter function 𝜞 = 𝑨𝑐𝑜𝑠(2𝜋𝜿𝑡). The hacker vehicle equipped 
with this exciter drives on the bridge, by which a sample 𝒙𝑯′ (already pre-processed) can be collected 
via the bridge sensor. Fig. 15a compares the sample 𝒙𝑯′ and the adversarial sample 𝒙𝟎′ produced by 
the PFA algorithm, which are very similar. Fig. 15b shows that its prediction is consistent with the 
above adversarial result that the model misclassifies healthy samples DC 0 as DC 2 with nearly 100% 
probability. These demonstrate that the hacker vehicle can effectively write adversarial alterations into 
the system without any authority.

                                           (a)                                                                                        (b)

Fig. 15 Sample from the hacker vehicle: (a) frequency response, (b) model prediction.

When using the hacker vehicle to reconstruct adversarial alterations in 10 PFs and 100 PFs, and 
considering all DCs, their confusion matrices are shown in Fig. 16a and Fig. 16b, respectively. Their 
patterns are consistent with the PFA results above, with success rates of 42% and 100%, respectively. 
This also proves the effectiveness of the hacker vehicle in case of nontarget attack. This type of 
nontarget attack is very close to a normal event visually and does not deviate from the physical 
response to it. With the introduction of the hacker vehicle, adversarial changes can be effectively 
written into the system without any authorization; defenses in data security are not even effective 
against it.

                                           (a)                                                                                        (b)

Fig. 16 Confusion matrix for samples from the hacker vehicle: (a) 10 PFs, (b) 100 PFs.

4.2. Target attack
4.2.1 Demonstration of PFA algorithm
A typical target attack aims to fool the SHM system to diagnose a damaged bridge as healthy, which 
could be riskier than a nontarget attack. DC 4 will be first used as the attack target to demonstrate how 
to fool the model to classify it as DC 0 (healthy). Target attacks generally require more PFs than 
nontarget attacks. We select 100 PFs, and their feature impacts can be referenced in Fig. 9. Based on 
the 𝑽𝟎 event as input, the bridge's frequency response and model predictions are shown in Fig. 17a 
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and Fig. 17b, respectively. Model ℳ predicts the bridge condition as DC 4 with a 93.1% probability, 
which is damage on 5-th element, μ=0.9. This could represent a moderate damage in practical 
engineering. However, for the adversarial results of the target attack using Algorithm 3, despite its 
frequency response being visually indistinguishable from the original, the model predicts it as DC 0 
(healthy) with a 95.4% probability, as shown in Fig. 18a and Fig. 18b. This indicates the target attack 
has worked well. 

                                           (a)                                                                                        (b)

Fig. 17 Original results: (a) frequency response, (b) model prediction.

                                           (a)                                                                                        (b)

Fig. 18 Target attack results: (a) frequency response, (b) model prediction.

After that, attempts are made to perturb DC 4 into all other DCs. Fig. 19a and Fig. 19b show the 
percentage of samples (totally 100 samples) where DC 4 has been successfully perturbed to the target 
labels using 100 and 200 PFs, respectively. It appears that target attacks are more effective against 
DCs of damage severities. This is because, in the feature space, DC 4 is closer to DCs of different 
damage severities than to DCs of different damage locations, allowing it to be perturbed to other DCs 
with fewer feature changes. Nevertheless, this can be addressed by increasing the number of PFs; for 
example, using 200 PFs can perturb DC 4 to any DCs with a 100% success rate. The success rate of 
target attacks is defined as the percentage of adversarial samples that have been successfully 
identified as the target class. When perturbing all DCs to DC 0, their confusion matrices, as shown in 
Fig. 20a and Fig. 20b, indicate an overall success rate of 40% (100 PFs) and 100% (200 PFs). It is 
found that DCs with a large difference to DC 0 (e.g., different damage location and severe damage) 
remain robustness against such attacks when there are few PFs. Increasing the PFs undermines this 
robustness, achieving a 100% success rate in fooling the system. These indicate that the adversarial 
alterations obtained through the PFA algorithm are effective. Then, the hacker vehicle will attempt to 
reproduce these modifications and illegally write them into the system.
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                                           (a)                                                                                        (b)

Fig. 19 Perturbation from DC 4 to others: (a) 100 PFs, (b) 200 PFs.

                                           (a)                                                                                        (b)

Fig. 20 Confusion matrix for target attacks: (a) 100 PFs, (b) 200 PFs.

4.2.2 Demonstration of hacker vehicle
For the target attack perturbing DC 4 to DC 0, with 100 PFs, the configuration of the exciter is shown 
in Fig. 21, where the impact of each feature and the corresponding exciter amplitude can be obtained. 
Fig. 22a compares the results from the hacker vehicle equipped with the exciter, 𝒙𝑯′, to the 
adversarial samples generated by the PFA algorithm, 𝒙𝟎′. It is evident that the two are very similar, 
indicating that the hacker vehicle can well reconstruct the adversarial alterations of the target attack. 
Moreover, Fig. 22b shows that prediction from the hacker vehicle is consistent with the PFA results. 
Considering all DCs, their confusion matrices are displayed in Fig. 23a and Fig. 22b, respectively. 
They are also consistent with the PFA matrices, with success rates of 39.5% and 100%, respectively. 
These results demonstrate the effectiveness of the hacker vehicle in target attacks. Furthermore, these 
malicious samples are difficult to detect visually or physically and cannot be guarded by data security 
strategies.
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Fig. 21 Configuration of the exciter.

                                           (a)                                                                                        (b)

Fig. 22 Sample from the hacker vehicle: (a) frequency response, (b) model prediction.

                                           (a)                                                                                        (b)

Fig. 23 Confusion matrix for samples from the hacker vehicle: (a) 100 PFs, (b) 200 PFs.

4.3. Feasibility on different models
In fact, this attack method is effective on different models. In addition to model ℳ, we trained two 
other commonly used networks on the original dataset; they are Network in Network (NiN) and VGG-
16. NiN is a DL network architecture that inserts additional 1 × 1 convolutional layers inside 
traditional convolutional layers to enhance the model's representational power [40]. VGG-16 is a 
popular CNN architecture, and the significance of it lies in its simple yet effective architecture that 
demonstrates excellent performance on classification tasks [41]. The network configurations have 
been kept similar to the original, with some modifications to adapt to the SHM task of this study. 
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Their details are shown in Table 3 and Table 4, respectively. It should be noted that since NiN and 
VGG-16 are originally designed for complex, large-scale tasks, applying them to the relatively small 
dataset of this study may lead to overfitting issues. To address these, dropout layers and an early 
stopping strategy have been added to the networks. The dropout rate is 0.3, and the early stopping 
condition is that no improvement in validation loss is observed within 20 epochs.

Table 3 NiN configurations
Layer Output shape Parameter Activation

Conv1d 2500 × 64 Kernel number: 64; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Conv1d 2500 × 64 Kernel number: 64; Kernel size:1; Stride: 1; Padding: “same” LeakyReLU

Max pooling 1250 × 64 Kernel: 2; Stride: 2 None
Dropout 1250 × 64 Rate: 0.3 None
Conv1d 1250 × 128 Kernel number: 128; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Conv1d 1250 × 128 Kernel number: 128; Kernel size:1; Stride: 1; Padding: “same” LeakyReLU

Max pooling 625 × 128 Kernel: 2; Stride: 2 None
Dropout 625 × 128 Rate: 0.3 None
Conv1d 625 × 30 Kernel number: 30; Kernel size:1; Stride: 1; Padding: “same” LeakyReLU
Flatten 18750 None None
Dense 10 None Softmax

Table 4 VGG-16 configurations
Layer Output shape Parameter Activation

Conv1d 2500 × 32 Kernel number: 32; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Max pooling 1250 × 32 Kernel: 2; Stride: 2 None

Conv1d 1250 × 64 Kernel number: 64; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Max pooling 625 × 64 Kernel: 2; Stride: 2 None

Conv1d 625 × 128 Kernel number: 128; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Max pooling 312 × 128 Kernel: 2; Stride: 2 None

Conv1d 312 × 128 Kernel number: 128; Kernel size:10; Stride: 1; Padding: “same” LeakyReLU
Max pooling 156 × 128 Kernel: 2; Stride: 2 None

Dropout 156 × 128 Rate: 0.3 None
Flatten 19968 None None
Dense 100 None None
Dense 10 None Softmax

The model training has been carried out within the environment and settings of Section 2.3. The 
training histories of NiN and VGG-16 are depicted in Fig. 24a and Fig. 24b, respectively. They 
ultimately achieved test accuracies of 91.6% (NiN) and 92.8% (VGG-16), respectively, which are 
slightly higher than model ℳ's accuracy of 91.2%. Both models stabilize before reaching 100 epochs, 
and according to their trends in test loss, there are no overfitting issues.

                                           (a)                                                                                        (b)

Fig. 24 Training histories for different models: (a) NiN, (b) VGG-16.
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Eavesdropping on samples from DC 0 (healthy) and adopting Algorithm 1, the feature impacts of 
these models are illustrated in Fig. 25a and Fig. 25b, where only features within 0-100 Hz are shown 
as other features have minor impacts. Clearly, some features near the first four frequencies of the 
bridge indeed receive more attention (3.8, 15.2, 34.2, and 60.8 Hz); however, the weights assigned to 
them are different, not to mention some features that are given high weights but whose physical 
significance remains unclear. This encourages the studies on model interpretability and 
trustworthiness. When selecting models, one may consider more than just the accuracy of results. 
Anyway, the main focus here is to demonstrate that for these models, they are all vulnerable to 
adversarial attacks.

                                           (a)                                                                                        (b)

Fig. 25 Feature impacts: (a) NiN, (b) VGG-16.

Taking the nontarget attack on the NiN model with 10 PFs of DC 0 as a case study, Fig. 26a and Fig. 
26b compare the frequency domain responses and model predictions for 𝒙𝟎, 𝒙𝟎′, and 𝒙𝑯′. The 
proposed PFA algorithm successfully perturbs the model's predictions with inconspicuous PF 
modifications, and the hacker vehicle effectively reproduces these modifications. Originally, the 
model predicted a 93.4% probability that a sample belonged to DC 0, but in the adversarial and hacker 
vehicle results, the model's predictions shifted to a 93.5% and 94.5% probability of belonging to DC 2, 
respectively. Fig. 27a displays the confusion matrices for nontarget attacks on NiN using 10 and 100 
PFs across all DCs, with overall success rates of 67.1% and 100%. Similarly, for target attacks aimed 
at perturbing samples to DC 0, the confusion matrices for NiN using 100 and 200 PFs across all DCs, 
shown in Fig. 28, have overall success rates of 48.8% and 100%. Due to space limitations, only the 
results for the hacker vehicle are presented here, but it can be known from the analysis that they 
closely replicate the PFA attacks. Clearly, the attack on NiN has been successful. 

                                           (a)                                                                                        (b)

Fig. 26 Attack on NiN: (a) frequency response, (b) model prediction.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4766247

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



21

                                           (a)                                                                                        (b)

Fig. 27 Confusion matrix for nontarget attack: (a) 10 PFs, (b) 100 PFs.

                                           (a)                                                                                        (b)

Fig. 28 Confusion matrix for target attack: (a) 100 PFs, (b) 200 PFs.

Fig. 29a and Fig. 29b compare the frequency domain responses and model predictions for 𝒙𝟎, 𝒙𝟎′, and 
𝒙𝑯′ of the VGG-16 model. Initially, the model predicted with a 97.2% probability that a sample 
belonged to DC 0, but after adversarial alterations, the predictions were disturbed to probabilities of 
72.1% and 70.3% of belonging to DC 2, respectively; the results from the hacker vehicle were similar 
to those from the PFA. In the confusion matrices for the hacker vehicle's nontarget attacks on the 
VGG-16 model across all DCs, utilizing 10 and 100 PFs (see Fig. 30), the overall success rates are 
58.9% and 100%, respectively. For the target attack that perturbs samples to DC 0, the confusion 
matrices using 100 and 200 PFs can be referred to Fig. 31. Their overall success rates are 48.7% and 
100%. These results demonstrate the success of the proposed method in fooling ML models. 
Furthermore, one may observe that both nontarget and target attacks on NiN and VGG-16 models 
seem to have higher success rates, despite their structures appearing more complex than model ℳ 
(their accuracy also being a bit higher than model ℳ). This suggests that models with greater 
complexity may be more "vulnerable" to malicious attacks, and considerations should extend beyond 
mere accuracy when choosing models. However, such vulnerabilities might be mitigated by defensive 
strategies. In any case, this is a topic worthy of discussion.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4766247

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



22

                                           (a)                                                                                        (b)

Fig. 29 Attack on VGG-16: (a) frequency response, (b) model prediction.

                                           (a)                                                                                        (b)

Fig. 30 Confusion matrix for nontarget attack: (a) 10 PFs, (b) 100 PFs.

                                           (a)                                                                                        (b)

Fig. 31 Confusion matrix for target attack: (a) 100 PFs, (b) 200 PFs.

5. Conclusion

This paper argues that data-driven SHM frameworks are vulnerable and demonstrates how to hack a 
DL-based bridge SHM system from an attacker's perspective. This raises concerns about model 
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interpretability and trustworthiness, rather than just prediction accuracy. But more than that, it gives 
meaning to a new field - the defence of SHM systems. The paper first proposes a PFA algorithm that 
seeks moderate alterations to the most influential features within physical constraints to attack the 
model, which is a black-box attack algorithm. It then conceptualizes a hacker vehicle that, by passing 
over the bridge, indirectly edits the bridge vibration signals through the VBI process, thus physically 
writing adversarial alterations into the system. Furthermore, through a case of a typical traffic event-
based bridge SHM, the method's performance is evaluated. Based on the results, the following 
conclusions can be drawn:

1. The proposed PFA algorithm can effectively identify the PFs that most significantly impact the 
model results, then seek moderate alterations to disturb model predictions to the desired outcomes. 
These modifications are visually similar to the original and comply with physical constraints, 
making them hard to detect.

2. The hacker vehicle can effectively reproduce the PFA algorithm's alterations and unauthorizedly 
write them into system samples. The model's predictions for samples from the hacker vehicle 
closely resemble those for the PFA samples. This physical attack extends defence work beyond 
the discipline of data security.

3. In nontarget attacks, altering as few as 2 PFs can disturb a structural state from healthy (DC 0) to 
damaged (DC 4). For some robust cases, increasing the number of PFs can improve the success 
rate of the attack. For all cases, it can attack the model with a 100% success rate by disturbing 100 
PFs.

4. In target attacks, the selected structural state can be disturbed to any desired state; increasing PFs 
can also increase its success rate. For all cases, it can attack the model with a 100% success rate 
by disturbing 200 PFs.

5. By attacking different models, the method's general effectiveness is proven. Interestingly, 
complex models appear to be more vulnerable to the attacks.

Future studies will involve configuring a real hacker vehicle for experimentation, the key to which is 
the adaptive exciter as described in the text; this could be made with a smartphone and a tailor-made 
program on it. Importantly, how to defend against such threats is a field for future exploration. We 
hope this paper will attract valuable ideas and discussions.
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