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Abstract: Dynamic responses can provide rich information for supporting the entire life cycle of 

structures, and they can either be measured from actual structures or simulated using the finite 

element (FE) method. For the FE simulation, insufficient fidelity of simulation data can significantly 

affect the confidence of analysis results, while FE model updating methods can partially address this 

problem by reducing the simulation error. However, most FE model updating methods inevitably 

update the hyperparameters of FE models using sophisticated algorithms with high computational 

complexities. Thus, one question was raised: whether there is a projection that can transfer the FE 

simulation data to the corresponding measurement data directly without performing FE model 

updating? To achieve this, we proposed a data synthesis method using FE simulation and deep 

learning space projection, which can be used to synthesize high-fidelity dynamic responses excited 

by some unseen load patterns in the measurement. A Dilated Causal Convolutional Neural Network 

(DCCNN) was designed for realising the space projection. Vibration experiments were conducted 

on both an I-shaped steel beam and the corresponding FE model to establish datasets and test the 

proposed method. The quality of the synthetic data was analysed in both the time domain and the 

frequency domain. The accurate amplitudes, natural frequencies, and mode shapes of the synthetic 

data successfully demonstrate the effectiveness of the proposed high-fidelity data synthesis method. 

Keywords: data synthesis, finite element analysis, space projection, Dilated Causal Convolutional 

Neural Network

1. Introduction

Measurement data of dynamic behaviours is fundamental for supporting the entire life cycle of 

structures, which includes design optimization [1, 2], analysis of structural behaviours [3-9], health 

assessment, damage prognostics [10-12], development of analytical methods [13, 14], etc. Powered 
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by advanced sensing technology and structural health monitoring (SHM) systems [15], dynamic 

structure behaviours can be observed, and the corresponding measurement data can be acquired. 

However, in many engineering scenarios, it is challenging or even impossible to acquire 

measurement data from structures [16, 17]. To address this challenge, finite element (FE) models 

are widely used for simulating structural dynamics and analysing structural performance. One 

crucial factor that affects the results of analyses is the quality or fidelity of simulation data. Indeed, 

deviations between the FE simulation data and the measured dynamic responses of real structures 

are inevitable [18], and the insufficient fidelity of simulation data can greatly affect the confidence 

of analysis results. 

The reasons for the deviations between FE simulation and measurement data mainly consist of 

three perspectives. Firstly, FE simulation is based on many assumptions and approximations [19-

21], for instance, constant axial stiffness EA and the transition from continuum to discrete. It is 

impossible to consider all the properties of structures and model them accurately, resulting in 

inevitable modelling deviations. Secondly, measurements of actual structures involve enormous 

uncertainties and random processes [22, 23], such as boundary conditions and noise, which are 

difficult to be modelled accurately. Thirdly, as sensor systems are not perfect, measurement error 

appears in all the observation data [24, 25], which also increases the difference between FE 

simulation data and measurement data. Consequently, time-series data generated by FE simulation 

and measurement data are not in the identical data space. 

FE model updating methods [26-28] can partially address the problem as aforementioned. FE 

model updating methods aim to minimize the deviation between FE models and actual structures. 

Typical FE model updating methods include mode-based updating methods [18, 29, 30], Bayesian 

methods [31-33], sensitivity-based updating methods [34, 35], frequency-based updating methods 

[36, 37], and machine learning-based methods [38-41], etc. Most of the existing FE model updating 

methods align the dominant frequency features or modal features of the FE models with the actual 

structures. However, most model updating methods inevitably update the hyperparameters of FE 

models using sophisticated algorithms with high computational complexities, and it is still 

challenging to simulate “high-fidelity” complex dynamic responses even using the updated FE 

models. One example is the simulation of structural dynamics using FE analysis. Comparing the FE 

simulation data of vibration to the measurement data in a short period or in the dB-scale frequency 

domain, apparent differences tend to be observed. Although the FE model updating methods can 

align the natural frequencies of the FE models to the actual structures, damping modelling can also 

greatly influence the fidelity of simulation data. Because of the high complexity of damping 

mechanism, it is challenging to model damping accurately in real engineering scenarios. Rayleigh 

damping, as one of the most widely adopted damping modelling methods, combines mass-

proportional damping and stiffness-proportional damping. However, it does not consider the energy 

dissipation of friction in supports, sound emission, anchor losses, or even thermoelastic damping, 
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resulting in some possible loss of fidelity in the simulation of structural dynamics. Therefore, 

simulation data generated by numerical methods are prone to be in different data space from that of 

measurement data. Hence, there is a need to further minimize the deviation between the data spaces 

of FE simulation and measurement data for improving the quality of the FE simulation data. This 

problem can be considered as a space projection task, which targets to project the data from the 

simulation data space to the measurement data space. Such data space projection can be achieved 

using modelling methods like Deep Learning (DL) [42] in an end-to-end manner.

DL has made a great wave of data-driven methods since 2015 [43], and it is becoming 

increasingly prevalent in the engineering field. Different from the traditional knowledge-based 

modelling approaches, DL is a data-driven method which can be applied with zero domain 

knowledge. Correlations between two datasets can be built automatically or projections between 

two different data spaces can be established automatically by training DL models. Countless 

examples of DL applications demonstrate DL’s power in solving real-world engineering problems, 

for instance, SHM [16, 44-46], especially image-based structural damage detection [47-49] and 

vibration-based structural state identification [50-52], detection of structural components [53], etc. 

Meanwhile, DL has also been used for style transfer tasks in the image processing and audio 

processing fields. Therefore, DL has demonstrated its merits for data transfer tasks or modelling 

complex projection between two datasets, and has shown a full potential to achieve the projection 

from the simulation data space to the measurement data space.

In this article, we proposed a method to generate high-fidelity time-series synthetic data. 

Projections from the FE simulation data space to the measurement data space are built using DL. To 

the best of our knowledge, this is the first attempt to synthesize time-series data using FE simulation 

and DL space projection. The projection enables a significant quality improvement of the time-series 

simulation data without performing FE model updating. One suitable application scenario for the 

proposed method is that, when dynamic responses of structures excited by some unseen load patterns 

are not available in the real world, the proposed method can achieve high-fidelity synthetic data in 

an end-to-end manner. Moreover, the high-fidelity time-series synthetic data generated by the 

proposed method can benefit all the downstream tasks as mentioned in the first paragraph. As a 

reminder, this article is organized into 5 sections. After introducing the background in Section 1, the 

proposed data synthesis method is presented in Section 2. Then Section 3 describes the experiments 

and datasets, and Section 4 discusses the results. Finally, some conclusions are drawn in Section 5. 

This idea was initialized in a short conference paper [54], in which we briefly proved the concept 

using a fully-connected neural network. In this manuscript, we proposed a new light-weighted DL 

model with much fewer trainable parameters, tested the performance of the method more rationally, 

investigated the case with both sufficient and limited training data, performed quantitative analyses 

in both time and frequency domains, and evaluated the quality of synthetic data with modal analyses.
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2. Methodology

2.1. Workflow of the proposed method 

The proposed method for time-series data synthesis is illustrated in Fig. 1. It consists of physical 

experiment, FE simulation, and data space projection. Identical external loads are attempted to be 

applied on both the actual specimen and the FE model. Even though the measurement errors of load 

amplitudes and manual errors of impact locations are inevitable, the errors of impact forces and 

locations can be managed in limited ranges. These errors are considered in the process of the 

proposed method which can provide some robustness to the space projection model. To prove the 

concept of the proposed method, vibration experiments with only hammer impact loads were 

performed on both a physical specimen and the corresponding numerical model. Actuators can also 

be used to apply excitations on structures because they can apply the assigned loads on the structures 

with other load patterns.  

The dynamic behaviour of the physical specimen is measured using an acceleration sensor 

system, and the corresponding dynamic behaviour of the numerical model is simulated using FE 

analysis. Then a paired dataset of measurement data and FE simulation data can be obtained which 

are used for training, validating, and testing the DL models. Finally, a projection from the data space 

of the FE simulation to the data space of the measurement data is established by DL modelling. The 

FE simulation dataset is used as input for the DL model, and the measurement dataset is for the 

ground truth. Consequently, the synthetic data can be predicted by the DL model.

Fig. 1. Architecture of the proposed method for time-series data synthesis

2.2. DL modelling

DL is a prevalent data-driven modelling method. It can approximate correlations between two 

datasets through a training procedure, with no requirement for domain knowledge. After designing 

Experiment

Numerical simulation

Space Projection

Measurement data

FE simulation data

Measurement dataFE simulation data

Identical 
external load

Paired
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the architecture of the DL model according to the specific tasks, the training process can be realised 

in three steps. Firstly, training data are fed into the DL model, and then corresponding predictions 

are obtained. Secondly, modelling loss is calculated by comparing the predictions and the ground 

truth via a certain loss function, e.g., mean square error (MSE). Finally, the loss is minimised using 

back-propagation [55] and gradient descent. 

The task of DL in the proposed method is to transfer the vibration data from the simulation 

space to the measurement space as illustrated in Fig. 1. As this is a time-series data processing, we 

designed a Dilated Causal Convolutional Neural Network (DCCNN), which stacks multiple Dilated 

Causal Convolution (DCC) layers as its core components. 

DCC is a specific type of convolution. Compared to the ordinary 1-D convolution, DCC has 

the operation of dilation and causal constraint. Dilation describes how convolutional kernels slide 

on the input data. The kernels are applied on an area that is larger than the kernel size by skipping 

input values with a certain step. The skipped step is called dilation rate. Stacking a few Dilated 

Convolution layers can effectively expand the receptive field. Causal constraint makes the prediction 

not depend on any neuron in the future timesteps. Such a feature makes it feasible for real-time 

processing, which provides a great potential of DCCNNs for being integrated into SHM systems or 

digital twin systems in the future. Fig. 2 shows an example of a DCCNN which includes 3 DCC 

layers with dilation rates of 1, 2, and 4. The receptive field reaches 16 for each neuron in the output 

layer in the illustration. Based on the unique characteristics of DCC, it is widely used for processing 

temporal data, e.g., audio generation [56], speech denoising [57], speech synthesis [58], etc. Since 

audio signal is a specific type of vibration data collected by microphones, it shares high similarities 

with the vibration data acquired from structures. Therefore, a DCCNN is proposed for time-series 

data synthesis.

Fig. 2. Example of a DCCNN

The structure of the proposed DCCNN is shown in Fig. 3. In total 8 DCC layers and 8 Leaky 

Rectified Linear Unit (ReLU) layers are designed between the input layer and the output layer. The 

Input layer

Output layer

Conv. 1D (Dilation = 1)

Conv. 1D (Dilation = 2)

Conv. 1D (Dilation = 4)
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dilation rates are 2i (𝑖 = 0,⋯, 7) in the DCC layers. The number of kernels is 32 and the kernel length 

is 5. As a result, the receptive field for each value in the prediction is 512, which is 12.8% (512/4000) 

of the total data length. The number of DCC layers was determined by balancing the receptive field 

and the number of trainable parameters with several rounds of trial and error. Insufficient receptive 

fields tend to cause very low amplitudes in the latter part of the synthetic data. Long receptive fields 

request deep network architecture with more trainable parameters, which is computationally costly. 

Leaky ReLU activation function, as explained in Fig. 4, is designed after each DCC layer to induce 

nonlinearity in the representation of the network, where 𝛼 of 0.5 is used to represent the negative 

slope. 

Fig. 3. Structure of the proposed DCCNN

Fig. 4. Illustration of Leaky ReLU

Detailed parameters of the DCCNN are summarized in Table 1. The total number of trainable 

parameters is only 37,833, which is very close to the number of samples in each datum 36,000 (4000 

samples × 9 channels). Designing similar numbers of trainable parameters in the DCCNN as the 

number of data samples aims to prevent over-fitting.
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Table 1. Parameters of the DCCNN

Layer Output shape Parameter Number of 
Parameters

Input 4000×9 - 0
Conv1D_1 4000×32 Dilation rate = 1 1472

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_2 4000×32 Dilation rate = 2 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_3 4000×32 Dilation rate = 4 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_4 4000×32 Dilation rate = 8 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_5 4000×32 Dilation rate = 16 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_6 4000×32 Dilation rate = 32 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_7 4000×32 Dilation rate = 64 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_8 4000×32 Dilation rate = 128 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Output 4000×9 297
In total - 37,833

3. Experiment 

As vibration data is one of the representative types of time-series data, we designed an 

experiment which uses vibration data to validate the proposed time-series data synthetic method. As 

introduced in Section 2, the proposed method comprises three main parts: physical experiment, FE 

simulation, and space projection. The details of those three parts in the case studies are introduced 

in the following subsections, respectively.

3.1. Physical experiment

Figs. 5 and 6 show the layout of the physical experiment for establishing the measurement 

dataset of vibration data. An I-shaped steel beam was selected as the specimen owing to its moderate 

complexity as a real structure. The total length of the beam is 4.4 m, and the span length is 4.0 m. 

The beam was simply supported at its two ends, and the imperfect boundary conditions increased 

the uncertainties in the vibration data.
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Fig. 5. Locations of accelerometers and hammer impacts

Fig. 6.  Specimen of the vibration experiment

The vibration measurement system consists of Brüel & Kjær 4371 accelerometers, Brüel & 

Kjær 2635 amplifiers, an electric hammer, a Measurement Computing DT9834 multifunction USB 

data acquisition (DAQ) device, and a laptop computer. In total 9 accelerometers were evenly 

distributed on the upper flange of the beam, named from Ch. 1 to Ch. 9. The sampling frequency is 

2000 Hz, and the measurement time after each hammering is 2.0 s. Thus, the vibration data of each 

measurement has a shape of 4000 samples × 9 channels. The measurement time of 2.0 s was 

determined according to the time for a free-damped vibration of the structure to vanish. Observing 

the variation of amplitudes of the free-damped vibration of the beam, it takes about 1.0 s from 

starting to the approximate end. Thus, doubling the time length of free damped vibration, 2.0 s was 

used to ensure sufficient information to be included in the measurement data. An electric hammer 

was used to measure the impact force, which triggers the measurement of free-damped vibration. 

The impact locations are in the midpoint of every two adjacent accelerometers. In total, the 

hammer impact loads were applied on 8 locations, termed from Loc. 1 to Loc. 8. The impact forces 

are random and generally lower than 10 N. Examples of a hammer impact force and the 

corresponding response of the beam are shown in Fig. 7. The impact location is Loc. 1, and the 

vibration measured in Ch. 6 is shown in Fig. 7b. Because the I-beam is modelled as a structure with 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4412976

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



9

multiple degrees of freedom, the vibration of the beam can be considered as the superposition of 

multiple vibration modes. Additionally, the imperfect boundary conditions on the supports also 

increase the complexity of the vibration. Therefore, Fig. 7b does not show a curve with 

monotonically decreasing amplitudes. The numbers of hammerings in all locations are summarized 

in Table 2. Over 140 times of impact were applied at each location. In total, 1277 free-damped 

vibration data were acquired. The measurement data also contain the noise components caused by 

the laboratory environment, for instance, the noise of load test, electric saw cutting, moving and 

dropping of heavy materials, etc. Raw measurement data was used directly without any noise 

reduction or pre-processing. 

       
(a) (b)

Fig. 7. Examples of hammer impact load and measured vibration. (a) impact load at Loc. 1, (b) 

measurement data of beam vibration (Ch. 6)

Table 2. Data distribution

Impact location 1 2 3 4 5 6 7 8 In total

Number of data 201 218 145 143 142 143 142 143 1,277

3.2. FE simulation 

To build the simulation dataset and test the proposed data synthesis method, a FE model of the 

steel beam was established using ABAQUS, as shown in Fig. 8. We intentionally created a FE model 

with high modelling error or misspecification in the following ways to check whether the proposed 

method can yield a satisfactory result even with inaccurate modelling. First, the FE model consists 

of only 22 beam elements (B31) and 23 nodes. The length of each element is 0.20 m. The beam is 

simply supported with a span length of 4.0 m. The FE model with limited details is prone to 

inaccurate solutions. Second, no model updating or calibration was performed on the FE model. The 

model parameters, such as Young’s modulus of 210 GPa, Poisson ratio of 0.3, density of 7850 kg/m3, 

and boundary conditions of a simply-supported beam, were not calibrated to match the experimental 

results. Third, the Rayleigh damping factors 𝛼 and 𝛽 in the FE model were empirically assigned 𝛼 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4412976

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



10

of 2×10-3 and 𝛽 of 5×10-5, respectively Those two parameters were not aligned with the damping 

ratios of the physical specimen calculated from the measurement data. Overall, the deviations 

between the physical specimen and the FE model were created deliberately with high 

misspecification for testing purposes. 

 
Fig. 8. Finite element model of the beam

The method for modelling the structural dynamics of the beam was mode superposition , which 

superimposes the weighted displacement of each mode shape, as shown in the examples [59, 60]. 

This experiment considered the superposition of the first 30 modes, which include vertical modes, 

horizontal modes, and longitudinal modes. As only vertical vibration is measured and discussed, 

only the vertical modes involved in the mode superposition are shown in Fig. 9, which are the first 

4 orders of bending modes. 

     
(a) (b)

     
(c) (d)

Fig. 9. Vertical bending modes of the FE model with natural frequencies of 80.49 Hz, 280.08 Hz, 

534.13 Hz, and 840.93 Hz

The impact loads recorded in the vibration experiment were applied to the corresponding 

locations of the FE model. As a result, 1277 simulation data were obtained as the pairs of the 

corresponding measurement data. Fig. 10 shows an example of the simulation data (vibration at Ch. 
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6, hammer impact at Loc. 1 with the load shown in Fig. 7a). Different from its corresponding 

measurement data shown in Fig. 7b, the simulation data have a higher frequency, and the amplitudes 

of the simulation data decrease monotonically according to the prescribed Rayleigh damping.

Fig. 10. Example of FE simulation data (Ch. 6, impact at Loc. 1)

Another detailed comparison between the measurement and simulation data in both time and 

frequency domains is shown in Fig. 11. The data are the vibration at Ch. 8 excited by the hammer 

impact at Loc. 8. In the time domain, the apparent differences in natural frequencies, amplitudes, 

and phases are qualitatively displayed. In the frequency domain, the difference in natural frequencies 

can be quantitively analysed, as summarized in Table 3. Observing the natural frequencies and 

damping ratios in Table 1, the differences between the measurement and simulation data can even 

reach 153.8%. Note that, no FE model updating was performed to minimize these differences, 

because we intended to investigate whether the proposed data synthesis method requests a precise 

FE model, or whether the proposed method can have great performance with a highly inaccurate FE 

model. 

Fig. 11. Comparison between the measurement data and FE simulation data 

(Impact at Loc. 8, Ch. 8)
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Table 3. Comparison between dynamic characteristics of the measurement and simulation data 

shown in Fig. 11

Mode
Natural 

Frequency
(Meas.) 

Natural 
Frequency

(Sim.)

Difference
(ratio)

Damping 
Ratio

(Meas.)

Damping 
Ratio
(Sim.)

Difference
(ratio)

1 62.5 Hz 80.5 Hz 18 Hz
(28.8%) 2.15% 1.26% 0.89%

(41.4%)

2 110.5 Hz 280.5 Hz 170 Hz
(153.8%) 4.42% 4.39% 0.03%

(0.68%)

3.3.Network training scenarios 

Two training cases are tested for the proposed DCCNN with different amounts of training and 

validation data, as shown in Table 4. Case 1 is the scenario with sufficient training data, and Case 2 

represents the scenario when only limited training data are available. In both cases, the vibration 

data excited by the impact loads at Locs. 5-8 were only used for test purposes. The difference 

between the two cases is the amount of training and validation data: Case 1 uses the data excited by 

the impact loads at Locs. 1-4 for training and validation, while Case 2 uses the data excited by the 

impact loads at only Loc. 1. The reason for choosing the data with impact only at Loc. 1 in Case 2 

is that the impact loads near supports may lead to more complex vibration than the impacting other 

places. The numbers of training data in the two cases differ 3.5 times. The data split in Case 1 is 

used for the determination of the structure of the DCCNN, and Case 2 is for testing the performance 

of the DCCNN with limited training data. 

Table 4. Data split in each case

Case Number of 
training data

Ratio 
(%)

Number of 
validation data

Ratio 
(%)

Number of 
test data

Ratio 
(%)

1 636
(Locs. 1-4) 49.8 71

(Locs. 1-4) 5.6 570
(Locs. 5-8) 44.6

2 180
(Loc. 1) 23.4 21

(Loc. 1) 2.7 570
(Locs. 5-8) 73.9

The optimizer is Adam [61] and the loss function is MSE as defined in Eq. (1). All the DCCNNs 

were trained for 5000 epochs. The learning rate was initialized with 0.001, and the learning rate was 

scaled by a factor of 0.75 if the training loss did not reduce in 50 epochs. The results of Cases 1 and 

2 are analysed and discussed in Section 4. 

𝑀𝑆𝐸 = 1
𝑛∑𝑛

𝑖=1 (𝑦𝑖 ― 𝑦′𝑖)2  (1)

4. Results

This section discusses the results of data synthesis generated by the proposed DCCNN in the 

two training cases. By performing the vibration experiment and the FE simulation as introduced in 
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Section 3, two paired datasets, named measurement dataset and FE simulation dataset, are 

established for training, validating, and testing the proposed data synthesis method.

4.1. Results of Case 1

As introduced in Table 5, the data with hammer impact at Locs. 1-4 were utilized for training 

and validation, and the rest data with hammer impact at Locs. 5-8 were used for testing. Fig. 12 

shows the training procedures of the proposed DCCNN. Both training and validation losses 

decreased smoothly, and very low training and validation losses were finally achieved. No 

overfitting occurred during the training procedure. 

Fig. 12. Training history of Cases 1

To test the performance of the DCCNN model, the MSE of each test result is visualized in Fig. 

13, which calculates the MSE between the measurement data (ground truth) and the synthetic data 

generated by the DCCNN. The MSE of each individual test data is in a range between 0.002 to 

0.014, and the mean MSE is 0.006 for the whole test set, which exhibits the high fidelity of the 

synthetic data. The test data can be divided into 4 groups according to their impact locations (Locs. 

5-8) by using different colours. Fig. 13 shows a phenomenon that, with relatively sufficient training 

data, the synthetic vibration data excited by the impact loads, that are close to the midpoint of the 

beam, tend to yield higher accuracy. In contrast, the synthetic vibration data excited by the impact 

loads, that are near to supports of the beam, tend to show a higher error. One possible reason for this 

phenomenon is the imperfect boundary conditions of the beam. When the impact load gets closer to 

the supports of the beam, the vibration tends to be more complex. As a result, the DCCNN is 

relatively more difficult to learn the features for synthetic data when the impact loads are close to 

the supports. 
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Fig. 13. MSE of each test data in Case 1 with the mean value of 0.006

Figs. 14 and 15 demonstrate the test result of the synthetic data generated by the proposed 

DCCNN in the Case 1 training scenario. Two data examples, which have lower and higher MSEs 

than the mean MSE of the whole test set 0.006, are randomly chosen from the test set. The first 

example shown in Fig. 14 is excited by an impact load at Loc. 5, and its MSE is 0.0034. The second 

example shown in Fig. 15 is excited by an impact load at Loc. 8, and the corresponding MSE is 

0.0066. In the two figures, all 9 channels of the synthetic data and the corresponding measurement 

data are compared individually. In Fig. 14 the amplitude, phase, and frequency of the synthetic data 

precisely match the measurement data. In Fig. 15, the amplitudes of the first several periods of the 

synthetic data can be slightly lower than that of the measurement data. The frequency and phase are 

presented correctly. The results demonstrate that the proposed method can successfully synthesize 

the vibration data excited by the loads that are not involved in the training and validation process. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4412976

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



15

Fig. 14. Synthetic data generated by DCCNN (Case 1, impact on Loc. 5, MSE of 0.0034) 

Fig. 15. Synthetic data generated by DCCNN (Case 1, impact at Loc.8, MSE of 0.0066)

To view more details of the synthetic data, Fig. 16 visualises the first 0.1 s of Ch. 5 in Fig. 14. 

Comparing the synthetic data and the corresponding measurement data (ground truth), the synthetic 

data precisely represent the low-frequency components of the measurement data. The difference in 
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the high-frequency components between the measurement and synthetic data can be observed. The 

waveform of the measurement data has apparent sawteeth, but the waveform of the DCCNN 

synthesised data is smoother, indicating fewer high-frequency components in the synthetic data. 

Such a characteristic of DCCNN makes it feasible to have the additional function of a smoother or 

low-pass filter. 

Fig. 16. First 0.1 s of the Ch. 5 in the synthetic data shown in Fig. 14

Subsequently, to investigate the quality of the synthetic data from the frequency perspective, 

we performed Fast Fourier Transformation (FFT) on the FE simulation, measurement, and synthetic 

data. Ch. 9 of the example (shown in Fig. 14) was visualised in Fig. 17. The subplots in the first row 

are the time-series waveforms, the subplots in the second row are the FFT spectrums in a linear 

scale, and the subplots in the last row are the FFT spectrums in the dB scale. From the linear-scale 

spectrums of the measurement data and synthetic data, two dominant peaks at 62.5 Hz and 110.5 Hz 

can be detected, indicating accurate representations of the natural modes of the beam in the synthetic 

data. In the dB-scale spectrum of synthetic data, the magnitudes over 200 Hz are lower than the 

corresponding measurement data, which proves that DCCNN has the characteristics of low-pass 

filter, and the components higher than about 200 Hz are depressed. 
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Fig. 17. Comparison of FE simulation, measurement, and synthetic data in the frequency domain

(impact at Loc. 5, Ch. 9 of the data example in Fig. 14) 

Furthermore, the mode shapes of the first two bending modes are identified from each synthetic 

and measurement data in the test set using cross spectrum method. The mean mode shapes of the 

test set data are calculated and visualised in Fig. 18, in which the mean mode shapes identified from 

the synthetic data are highly consistent with those of the measurement data. Even though the 

measured mode shapes are apparently different from simulation results, the proposed DCCNN can 

accurately reproduce the mode shape information in the synthetic data. Modal Assurance Criterion 

(MAC), as defined in Eq. (2), is used as an indicator to quantitively evaluate the accuracy of the 

mode shapes identified from the synthetic data. The MACs of the synthetic, FE simulation, and 

measurement data are analysed and visualized in Fig. 19. Overall, the MAC values of the mean 

mode shapes identified from the synthetic data are greater than 0.9742 compared to those of the 

measurement data, indicating the high quality of the synthetic data generated by the DCCNN.

𝑀𝐴𝐶(𝜑𝐴,𝜑𝐵) =
|{𝜑𝐴}𝑇{𝜑𝐵}|2

({𝜑𝐴}𝑇{𝜑𝐴})({𝜑𝐵}𝑇{𝜑𝐵})    (2)
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(a) (b)

Fig. 18. Mean mode shapes identified from the synthetic data generated in Case 1. (a) Mode 1, 1st 

bending mode, (b) Mode 2, 2nd bending mode. 

   
(a) (b)

Fig. 19. MAC of mean mode shapes in Case 1. (a) Mode 1, (b) Mode 2

4.2. Results of Case 2

As obtaining sufficient training data is very difficult or even impossible in many actual 

engineering scenarios, training with a small scale of data has become a natural need for DL 

modelling. To investigate the performance of the proposed DCCNN under the training scenario with 

limited data, in this section, only 180 data with impact at Loc. 1 are used for training, other 21 data 

with impact at Loc. 1 are for validation, and the data with impact at Locs. 5-8 are for testing.

The training histories of losses in Case 2 are shown in Fig. 20. The training loss and validation 

loss were reduced smoothly and simultaneously. No overfitting appeared in the training procedures. 

Finally, the losses reached a 10-5 level, which indicates that the models have learned critical features 

from the measurement data. 
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Fig. 20. Training history of Case 2

To test the performance of the DCCNN model trained with limited data, the MSE of each test 

result is visualized in Fig. 21, which calculates the MSE between the measurement data (ground 

truth) and the synthetic data generated by the DCCNN. The MSE of each individual test data is in a 

range between 0.004 to 0.028, and the mean MSE of the whole test set is 0.014. Interestingly, 

comparing the test results of Case 2 to Case 1, the number of training data in Case 2 is only 28.39% 

of it in Case 1. However, the lower bound, upper bound, and the mean value of the test errors in 

Case 2 are approximately doubled. The test errors in Case 2 are not greatly affected by the sudden 

reduction of training data. Fig. 21 also shows a phenomenon that, only using the data with impact at 

Loc. 1 for training, the MSEs of the synthetic data with impact at Locs. 5-7 are generally in the same 

range, and the MSEs of the synthetic data with impact at Loc. 8 are apparently lower than those of 

Locs. 5-7. One possible explanation for this phenomenon is that the DCCNN has only learned the 

features of the vibration excited by the loads close to the support (Loc. 1). Since Loc.8 is also close 

to the support, and it is in the symmetric position of Loc. 1, better test results were obtained when 

the impacts are in Loc. 8 of the test data. 

Fig. 21. MSE of each test data in Case 2 with the mean value of 0.014
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Figs. 22 and 23 demonstrate the two examples of the synthetic data in the test set, which are 

generated by the proposed DCCNN trained with limited data in Case 2. The two test data are the 

two used in Figs. 14 and 15. The MSEs of the two test examples are 0.0159 and 0.0081, which are 

higher and lower than the mean MSE of the whole test set (0.014), respectively. Observing Figs. 22 

and 23, when trained with limited data, even though the amplitudes of the synthetic data are not as 

accurate as those in Figs. 14 and 15 in Case 1, the DCCNN can successfully learn the dominant 

features of the vibration, like frequencies and phases. 

Fig. 22. Synthetic data generated by DCCNN (Case 2, impact at Loc. 5, MSE of 0.0159) 
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Fig. 23. Synthetic data generated by DCCNN (Case 2, impact at Loc.8, MSE of 0.0081)

Then, to investigate the quality of the synthetic data in the frequency domain, we performed 

FFT on the FE simulation, measurement, and synthetic data. Using Ch. 6 in Fig. 23 as an example, 

as visualised in Fig. 24, the subplots of waveforms in the first row show the amplitudes of the 

synthetic data lose some accuracy with the reduction of training data. In the FFT subplots in the 

second and third rows, the two peaks indicate the synthetic data can successfully reproduce the mode 

features. In the dB-scale spectrum of synthetic data, the magnitudes over 100 Hz show also lower 

accuracy than the corresponding measurement data, which proves that DCCNN has the 

characteristics of low-pass filter, and the components higher than about 100 Hz are depressed. 
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Fig. 24. Comparison of FE simulation, measurement, and synthetic data in the frequency domain

(impact at Loc. 8, Ch. 6 of the data example in Fig. 23) 

Meanwhile, the accuracies of the mean mode shapes identified from the synthetic data in the 

test set of Case 2 are also analysed. Fig. 25 compares the identified mean mode shapes of the 

synthetic data in the whole test set to those of the FE simulation and measurement data. Both Modes 

1 and 2 can be identified from the synthetic data. The consistencies of the identified mode shapes 

are shown in Fig. 26. The values of MAC for all the identified mode shapes are higher than 0.98, 

indicating the accurate representation of the proposed networks even with limited training data. 

    
(a)    (b)

Fig. 25. Mode shapes identified from the synthetic data generated in Case 1. (a) Mode 1: 1st 

bending mode, (b) Mode 2: 2nd bending mode. 
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(a)  (b)

Fig. 26. MAC of mode shapes in Case 2. (a) Mode 1, (b) Mode 2 

5. Conclusions

In this paper, we proposed a novel method to synthesise high-fidelity time-series data. The 

proposed method consists of experiments, FE simulation, and space projection using DL. Low-

fidelity FE simulation data can be transferred to high-fidelity measurement data in an end-to-end 

manner. A DL model DCCNN was designed for this projecting task. Both physical and numerical 

vibration experiments were performed to test the proposed method. The remarkable quality of the 

synthetic data demonstrates the effectiveness of the proposed method. Some detailed conclusions 

are drawn as follows.

First, the proposed method can accurately synthesise the vibration data excited by the loads 

that were not used for training and validation. This shows the applicability of the proposed method 

for synthesising high-fidelity structural dynamics when the desired loads are not available or cannot 

be applied on real structures. 

Second, the proposed method can generate realistic synthetic vibration data of structures 

without performing FE model updating. Compared to the measurement data acquired directly from 

the structure, the synthetic vibration data are very accurate when observed in the time domain, 

frequency domain, natural frequencies, phase, amplitude, and mode shapes. The high-quality 

synthetic data also indicates the rationality of the design of the DCCNN for the data synthesis task.  

Third, the proposed DCCNN has the characteristics of low-pass filter. When in the normal 

training case with sufficient training data, DCCNN tends to depress the components higher than 200 

Hz. When training with limited data, the DCCNN tends to depress the components higher than 100 

Hz. Such a feature makes the DL models can be considered with an integrated noise reducer. 

The proposed method can contribute to all the downstream tasks, for instance, analyses of 

structural dynamic behaviours, design optimisation, data-driven identification tasks, etc., which 

request time-series simulation data. Our future work will be focused on addressing the following 

limitations. First, the performance of the proposed data synthesis method with other types of loads 
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and structural responses is unknown. Excitations with actuators and forced vibration data will be 

used to further test and update the proposed method. Second, the DCCNN needs to be slightly 

refined when the structure and corresponding FE model are changed. Our next work includes the 

development of a method to model the domain shift and avoid the data required for refining the 

DCCNN when the structure and FE model are changed. This aims to synthesise dynamic responses 

of the structure with specified non-existent changes or damage. 
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Abstract: Dynamic responses can provide rich information for supporting the entire life cycle of 

structures, and they can either be measured from actual structures or simulated using the finite 

element (FE) method. For the FE simulation, insufficient fidelity of simulation data can significantly 

affect the confidence of analysis results, while FE model updating methods can partially address this 

problem by reducing the simulation error. However, most FE model updating methods inevitably 

update the hyperparameters of FE models using sophisticated algorithms with high computational 

complexities. Thus, one question was raised: whether there is a projection that can transfer the FE 

simulation data to the corresponding measurement data directly without performing FE model 

updating? To achieve this, we proposed a data synthesis method using FE simulation and deep 

learning space projection, which can be used to synthesize high-fidelity dynamic responses excited 

by some unseen load patterns in the measurement. A Dilated Causal Convolutional Neural Network 

(DCCNN) was designed for realising the space projection. Vibration experiments were conducted 

on both an I-shaped steel beam and the corresponding FE model to establish datasets and test the 

proposed method. The quality of the synthetic data was analysed in both the time domain and the 

frequency domain. The accurate amplitudes, natural frequencies, and mode shapes of the synthetic 

data successfully demonstrate the effectiveness of the proposed high-fidelity data synthesis method. 

Keywords: data synthesis, finite element analysis, space projection, Dilated Causal Convolutional 

Neural Network

1. Introduction

Measurement data of dynamic behaviours is fundamental for supporting the entire life cycle of 

structures, which includes design optimization [1, 2], analysis of structural behaviours [3-9], health 

assessment, damage prognostics [10-12], development of analytical methods [13, 14], etc. Powered 
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2

by advanced sensing technology and structural health monitoring (SHM) systems [15], dynamic 

structure behaviours can be observed, and the corresponding measurement data can be acquired. 

However, in many engineering scenarios, it is challenging or even impossible to acquire 

measurement data from structures [16, 17]. To address this challenge, finite element (FE) models 

are widely used for simulating structural dynamics and analysing structural performance. One 

crucial factor that affects the results of analyses is the quality or fidelity of simulation data. Indeed, 

deviations between the FE simulation data and the measured dynamic responses of real structures 

are inevitable [18], and the insufficient fidelity of simulation data can greatly affect the confidence 

of analysis results. 

The reasons for the deviations between FE simulation and measurement data mainly consist of 

three perspectives. Firstly, FE simulation is based on many assumptions and approximations [19-

21], for instance, constant axial stiffness EA and the transition from continuum to discrete. It is 

impossible to consider all the properties of structures and model them accurately, resulting in 

inevitable modelling deviations. Secondly, measurements of actual structures involve enormous 

uncertainties and random processes [22, 23], such as boundary conditions and noise, which are 

difficult to be modelled accurately. Thirdly, as sensor systems are not perfect, measurement error 

appears in all the observation data [24, 25], which also increases the difference between FE 

simulation data and measurement data. Consequently, time-series data generated by FE simulation 

and measurement data are not in the identical data space. 

FE model updating methods [26-28] can partially address the problem as aforementioned. FE 

model updating methods aim to minimize the deviation between FE models and actual structures. 

Typical FE model updating methods include mode-based updating methods [18, 29, 30], Bayesian 

methods [31-33], sensitivity-based updating methods [34, 35], frequency-based updating methods 

[36, 37], and machine learning-based methods [38-41], etc. Most of the existing FE model updating 

methods align the dominant frequency features or modal features of the FE models with the actual 

structures. However, most model updating methods inevitably update the hyperparameters of FE 

models using sophisticated algorithms with high computational complexities, and it is still 

challenging to simulate “high-fidelity” complex dynamic responses even using the updated FE 

models. One example is the simulation of structural dynamics using FE analysis. Comparing the FE 

simulation data of vibration to the measurement data in a short period or in the dB-scale frequency 

domain, apparent differences tend to be observed. Although the FE model updating methods can 

align the natural frequencies of the FE models to the actual structures, damping modelling can also 

greatly influence the fidelity of simulation data. Because of the high complexity of damping 

mechanism, it is challenging to model damping accurately in real engineering scenarios. Rayleigh 

damping, as one of the most widely adopted damping modelling methods, combines mass-

proportional damping and stiffness-proportional damping. However, it does not consider the energy 

dissipation of friction in supports, sound emission, anchor losses, or even thermoelastic damping, 
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3

resulting in some possible loss of fidelity in the simulation of structural dynamics. Therefore, 

simulation data generated by numerical methods are prone to be in different data space from that of 

measurement data. Hence, there is a need to further minimize the deviation between the data spaces 

of FE simulation and measurement data for improving the quality of the FE simulation data. This 

problem can be considered as a space projection task, which targets to project the data from the 

simulation data space to the measurement data space. Such data space projection can be achieved 

using modelling methods like Deep Learning (DL) [42] in an end-to-end manner.

DL has made a great wave of data-driven methods since 2015 [43], and it is becoming 

increasingly prevalent in the engineering field. Different from the traditional knowledge-based 

modelling approaches, DL is a data-driven method which can be applied with zero domain 

knowledge. Correlations between two datasets can be built automatically or projections between 

two different data spaces can be established automatically by training DL models. Countless 

examples of DL applications demonstrate DL’s power in solving real-world engineering problems, 

for instance, SHM [16, 44-46], especially image-based structural damage detection [47-49] and 

vibration-based structural state identification [50-52], detection of structural components [53], etc. 

Meanwhile, DL has also been used for style transfer tasks in the image processing and audio 

processing fields. Therefore, DL has demonstrated its merits for data transfer tasks or modelling 

complex projection between two datasets, and has shown a full potential to achieve the projection 

from the simulation data space to the measurement data space.

In this article, we proposed a method to generate high-fidelity time-series synthetic data. 

Projections from the FE simulation data space to the measurement data space are built using DL. To 

the best of our knowledge, this is the first attempt to synthesize time-series data using FE simulation 

and DL space projection. The projection enables a significant quality improvement of the time-series 

simulation data without performing FE model updating. One suitable application scenario for the 

proposed method is that, when dynamic responses of structures excited by some unseen load patterns 

are not available in the real world, the proposed method can achieve high-fidelity synthetic data in 

an end-to-end manner. Moreover, the high-fidelity time-series synthetic data generated by the 

proposed method can benefit all the downstream tasks as mentioned in the first paragraph. As a 

reminder, this article is organized into 5 sections. After introducing the background in Section 1, the 

proposed data synthesis method is presented in Section 2. Then Section 3 describes the experiments 

and datasets, and Section 4 discusses the results. Finally, some conclusions are drawn in Section 5. 

This idea was initialized in a short conference paper [54], in which we briefly proved the concept 

using a fully-connected neural network. In this manuscript, we proposed a new light-weighted DL 

model with much fewer trainable parameters, tested the performance of the method more rationally, 

investigated the case with both sufficient and limited training data, performed quantitative analyses 

in both time and frequency domains, and evaluated the quality of synthetic data with modal analyses.
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2. Methodology

2.1. Workflow of the proposed method 

The proposed method for time-series data synthesis is illustrated in Fig. 1. It consists of physical 

experiment, FE simulation, and data space projection. Identical external loads are attempted to be 

applied on both the actual specimen and the FE model. Even though the measurement errors of load 

amplitudes and manual errors of impact locations are inevitable, the errors of impact forces and 

locations can be managed in limited ranges. These errors are considered in the process of the 

proposed method which can provide some robustness to the space projection model. To prove the 

concept of the proposed method, vibration experiments with only hammer impact loads were 

performed on both a physical specimen and the corresponding numerical model. Actuators can also 

be used to apply excitations on structures because they can apply the assigned loads on the structures 

with other load patterns.  

The dynamic behaviour of the physical specimen is measured using an acceleration sensor 

system, and the corresponding dynamic behaviour of the numerical model is simulated using FE 

analysis. Then a paired dataset of measurement data and FE simulation data can be obtained which 

are used for training, validating, and testing the DL models. Finally, a projection from the data space 

of the FE simulation to the data space of the measurement data is established by DL modelling. The 

FE simulation dataset is used as input for the DL model, and the measurement dataset is for the 

ground truth. Consequently, the synthetic data can be predicted by the DL model.

Fig. 1. Architecture of the proposed method for time-series data synthesis

2.2. DL modelling

DL is a prevalent data-driven modelling method. It can approximate correlations between two 

datasets through a training procedure, with no requirement for domain knowledge. After designing 

Experiment

Numerical simulation

Space Projection

Measurement data

FE simulation data

Measurement dataFE simulation data

Identical 
external load

Paired
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5

the architecture of the DL model according to the specific tasks, the training process can be realised 

in three steps. Firstly, training data are fed into the DL model, and then corresponding predictions 

are obtained. Secondly, modelling loss is calculated by comparing the predictions and the ground 

truth via a certain loss function, e.g., mean square error (MSE). Finally, the loss is minimised using 

back-propagation [55] and gradient descent. 

The task of DL in the proposed method is to transfer the vibration data from the simulation 

space to the measurement space as illustrated in Fig. 1. As this is a time-series data processing, we 

designed a Dilated Causal Convolutional Neural Network (DCCNN), which stacks multiple Dilated 

Causal Convolution (DCC) layers as its core components. 

DCC is a specific type of convolution. Compared to the ordinary 1-D convolution, DCC has 

the operation of dilation and causal constraint. Dilation describes how convolutional kernels slide 

on the input data. The kernels are applied on an area that is larger than the kernel size by skipping 

input values with a certain step. The skipped step is called dilation rate. Stacking a few Dilated 

Convolution layers can effectively expand the receptive field. Causal constraint makes the prediction 

not depend on any neuron in the future timesteps. Such a feature makes it feasible for real-time 

processing, which provides a great potential of DCCNNs for being integrated into SHM systems or 

digital twin systems in the future. Fig. 2 shows an example of a DCCNN which includes 3 DCC 

layers with dilation rates of 1, 2, and 4. The receptive field reaches 16 for each neuron in the output 

layer in the illustration. Based on the unique characteristics of DCC, it is widely used for processing 

temporal data, e.g., audio generation [56], speech denoising [57], speech synthesis [58], etc. Since 

audio signal is a specific type of vibration data collected by microphones, it shares high similarities 

with the vibration data acquired from structures. Therefore, a DCCNN is proposed for time-series 

data synthesis.

Fig. 2. Example of a DCCNN

The structure of the proposed DCCNN is shown in Fig. 3. In total 8 DCC layers and 8 Leaky 

Rectified Linear Unit (ReLU) layers are designed between the input layer and the output layer. The 

Input layer

Output layer

Conv. 1D (Dilation = 1)

Conv. 1D (Dilation = 2)

Conv. 1D (Dilation = 4)
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6

dilation rates are 2i (𝑖 = 0,⋯, 7) in the DCC layers. The number of kernels is 32 and the kernel length 

is 5. As a result, the receptive field for each value in the prediction is 512, which is 12.8% (512/4000) 

of the total data length. The number of DCC layers was determined by balancing the receptive field 

and the number of trainable parameters with several rounds of trial and error. Insufficient receptive 

fields tend to cause very low amplitudes in the latter part of the synthetic data. Long receptive fields 

request deep network architecture with more trainable parameters, which is computationally costly. 

Leaky ReLU activation function, as explained in Fig. 4, is designed after each DCC layer to induce 

nonlinearity in the representation of the network, where 𝛼 of 0.5 is used to represent the negative 

slope. 

Fig. 3. Structure of the proposed DCCNN

Fig. 4. Illustration of Leaky ReLU

Detailed parameters of the DCCNN are summarized in Table 1. The total number of trainable 

parameters is only 37,833, which is very close to the number of samples in each datum 36,000 (4000 

samples × 9 channels). Designing similar numbers of trainable parameters in the DCCNN as the 

number of data samples aims to prevent over-fitting.
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Table 1. Parameters of the DCCNN

Layer Output shape Parameter Number of 
Parameters

Input 4000×9 - 0
Conv1D_1 4000×32 Dilation rate = 1 1472

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_2 4000×32 Dilation rate = 2 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_3 4000×32 Dilation rate = 4 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_4 4000×32 Dilation rate = 8 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_5 4000×32 Dilation rate = 16 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_6 4000×32 Dilation rate = 32 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_7 4000×32 Dilation rate = 64 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Conv1D_8 4000×32 Dilation rate = 128 5152

Leaky ReLU 4000×32 𝛼 = 0.5 0
Output 4000×9 297
In total - 37,833

3. Experiment 

As vibration data is one of the representative types of time-series data, we designed an 

experiment which uses vibration data to validate the proposed time-series data synthetic method. As 

introduced in Section 2, the proposed method comprises three main parts: physical experiment, FE 

simulation, and space projection. The details of those three parts in the case studies are introduced 

in the following subsections, respectively.

3.1. Physical experiment

Figs. 5 and 6 show the layout of the physical experiment for establishing the measurement 

dataset of vibration data. An I-shaped steel beam was selected as the specimen owing to its moderate 

complexity as a real structure. The total length of the beam is 4.4 m, and the span length is 4.0 m. 

The beam was simply supported at its two ends, and the imperfect boundary conditions increased 

the uncertainties in the vibration data.
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Fig. 5. Locations of accelerometers and hammer impacts

Fig. 6.  Specimen of the vibration experiment

The vibration measurement system consists of Brüel & Kjær 4371 accelerometers, Brüel & 

Kjær 2635 amplifiers, an electric hammer, a Measurement Computing DT9834 multifunction USB 

data acquisition (DAQ) device, and a laptop computer. In total 9 accelerometers were evenly 

distributed on the upper flange of the beam, named from Ch. 1 to Ch. 9. The sampling frequency is 

2000 Hz, and the measurement time after each hammering is 2.0 s. Thus, the vibration data of each 

measurement has a shape of 4000 samples × 9 channels. The measurement time of 2.0 s was 

determined according to the time for a free-damped vibration of the structure to vanish. Observing 

the variation of amplitudes of the free-damped vibration of the beam, it takes about 1.0 s from 

starting to the approximate end. Thus, doubling the time length of free damped vibration, 2.0 s was 

used to ensure sufficient information to be included in the measurement data. An electric hammer 

was used to measure the impact force, which triggers the measurement of free-damped vibration. 

The impact locations are in the midpoint of every two adjacent accelerometers. In total, the 

hammer impact loads were applied on 8 locations, termed from Loc. 1 to Loc. 8. The impact forces 

are random and generally lower than 10 N. Examples of a hammer impact force and the 

corresponding response of the beam are shown in Fig. 7. The impact location is Loc. 1, and the 

vibration measured in Ch. 6 is shown in Fig. 7b. Because the I-beam is modelled as a structure with 
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multiple degrees of freedom, the vibration of the beam can be considered as the superposition of 

multiple vibration modes. Additionally, the imperfect boundary conditions on the supports also 

increase the complexity of the vibration. Therefore, Fig. 7b does not show a curve with 

monotonically decreasing amplitudes. The numbers of hammerings in all locations are summarized 

in Table 2. Over 140 times of impact were applied at each location. In total, 1277 free-damped 

vibration data were acquired. The measurement data also contain the noise components caused by 

the laboratory environment, for instance, the noise of load test, electric saw cutting, moving and 

dropping of heavy materials, etc. Raw measurement data was used directly without any noise 

reduction or pre-processing. 

       
(a) (b)

Fig. 7. Examples of hammer impact load and measured vibration. (a) impact load at Loc. 1, (b) 

measurement data of beam vibration (Ch. 6)

Table 2. Data distribution

Impact location 1 2 3 4 5 6 7 8 In total

Number of data 201 218 145 143 142 143 142 143 1,277

3.2. FE simulation 

To build the simulation dataset and test the proposed data synthesis method, a FE model of the 

steel beam was established using ABAQUS, as shown in Fig. 8. We intentionally created a FE model 

with high modelling error or misspecification in the following ways to check whether the proposed 

method can yield a satisfactory result even with inaccurate modelling. First, the FE model consists 

of only 22 beam elements (B31) and 23 nodes. The length of each element is 0.20 m. The beam is 

simply supported with a span length of 4.0 m. The FE model with limited details is prone to 

inaccurate solutions. Second, no model updating or calibration was performed on the FE model. The 

model parameters, such as Young’s modulus of 210 GPa, Poisson ratio of 0.3, density of 7850 kg/m3, 

and boundary conditions of a simply-supported beam, were not calibrated to match the experimental 

results. Third, the Rayleigh damping factors 𝛼 and 𝛽 in the FE model were empirically assigned 𝛼 
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10

of 2×10-3 and 𝛽 of 5×10-5, respectively Those two parameters were not aligned with the damping 

ratios of the physical specimen calculated from the measurement data. Overall, the deviations 

between the physical specimen and the FE model were created deliberately with high 

misspecification for testing purposes. 

 
Fig. 8. Finite element model of the beam

The method for modelling the structural dynamics of the beam was mode superposition , which 

superimposes the weighted displacement of each mode shape, as shown in the examples [59, 60]. 

This experiment considered the superposition of the first 30 modes, which include vertical modes, 

horizontal modes, and longitudinal modes. As only vertical vibration is measured and discussed, 

only the vertical modes involved in the mode superposition are shown in Fig. 9, which are the first 

4 orders of bending modes. 

     
(a) (b)

     
(c) (d)

Fig. 9. Vertical bending modes of the FE model with natural frequencies of 80.49 Hz, 280.08 Hz, 

534.13 Hz, and 840.93 Hz

The impact loads recorded in the vibration experiment were applied to the corresponding 

locations of the FE model. As a result, 1277 simulation data were obtained as the pairs of the 

corresponding measurement data. Fig. 10 shows an example of the simulation data (vibration at Ch. 
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6, hammer impact at Loc. 1 with the load shown in Fig. 7a). Different from its corresponding 

measurement data shown in Fig. 7b, the simulation data have a higher frequency, and the amplitudes 

of the simulation data decrease monotonically according to the prescribed Rayleigh damping.

Fig. 10. Example of FE simulation data (Ch. 6, impact at Loc. 1)

Another detailed comparison between the measurement and simulation data in both time and 

frequency domains is shown in Fig. 11. The data are the vibration at Ch. 8 excited by the hammer 

impact at Loc. 8. In the time domain, the apparent differences in natural frequencies, amplitudes, 

and phases are qualitatively displayed. In the frequency domain, the difference in natural frequencies 

can be quantitively analysed, as summarized in Table 3. Observing the natural frequencies and 

damping ratios in Table 1, the differences between the measurement and simulation data can even 

reach 153.8%. Note that, no FE model updating was performed to minimize these differences, 

because we intended to investigate whether the proposed data synthesis method requests a precise 

FE model, or whether the proposed method can have great performance with a highly inaccurate FE 

model. 

Fig. 11. Comparison between the measurement data and FE simulation data 

(Impact at Loc. 8, Ch. 8)
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Table 3. Comparison between dynamic characteristics of the measurement and simulation data 

shown in Fig. 11

Mode
Natural 

Frequency
(Meas.) 

Natural 
Frequency

(Sim.)

Difference
(ratio)

Damping 
Ratio

(Meas.)

Damping 
Ratio
(Sim.)

Difference
(ratio)

1 62.5 Hz 80.5 Hz 18 Hz
(28.8%) 2.15% 1.26% 0.89%

(41.4%)

2 110.5 Hz 280.5 Hz 170 Hz
(153.8%) 4.42% 4.39% 0.03%

(0.68%)

3.3.Network training scenarios 

Two training cases are tested for the proposed DCCNN with different amounts of training and 

validation data, as shown in Table 4. Case 1 is the scenario with sufficient training data, and Case 2 

represents the scenario when only limited training data are available. In both cases, the vibration 

data excited by the impact loads at Locs. 5-8 were only used for test purposes. The difference 

between the two cases is the amount of training and validation data: Case 1 uses the data excited by 

the impact loads at Locs. 1-4 for training and validation, while Case 2 uses the data excited by the 

impact loads at only Loc. 1. The reason for choosing the data with impact only at Loc. 1 in Case 2 

is that the impact loads near supports may lead to more complex vibration than the impacting other 

places. The numbers of training data in the two cases differ 3.5 times. The data split in Case 1 is 

used for the determination of the structure of the DCCNN, and Case 2 is for testing the performance 

of the DCCNN with limited training data. 

Table 4. Data split in each case

Case Number of 
training data

Ratio 
(%)

Number of 
validation data

Ratio 
(%)

Number of 
test data

Ratio 
(%)

1 636
(Locs. 1-4) 49.8 71

(Locs. 1-4) 5.6 570
(Locs. 5-8) 44.6

2 180
(Loc. 1) 23.4 21

(Loc. 1) 2.7 570
(Locs. 5-8) 73.9

The optimizer is Adam [61] and the loss function is MSE as defined in Eq. (1). All the DCCNNs 

were trained for 5000 epochs. The learning rate was initialized with 0.001, and the learning rate was 

scaled by a factor of 0.75 if the training loss did not reduce in 50 epochs. The results of Cases 1 and 

2 are analysed and discussed in Section 4. 

𝑀𝑆𝐸 = 1
𝑛∑𝑛

𝑖=1 (𝑦𝑖 ― 𝑦′𝑖)2  (1)

4. Results

This section discusses the results of data synthesis generated by the proposed DCCNN in the 

two training cases. By performing the vibration experiment and the FE simulation as introduced in 
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Section 3, two paired datasets, named measurement dataset and FE simulation dataset, are 

established for training, validating, and testing the proposed data synthesis method.

4.1. Results of Case 1

As introduced in Table 5, the data with hammer impact at Locs. 1-4 were utilized for training 

and validation, and the rest data with hammer impact at Locs. 5-8 were used for testing. Fig. 12 

shows the training procedures of the proposed DCCNN. Both training and validation losses 

decreased smoothly, and very low training and validation losses were finally achieved. No 

overfitting occurred during the training procedure. 

Fig. 12. Training history of Cases 1

To test the performance of the DCCNN model, the MSE of each test result is visualized in Fig. 

13, which calculates the MSE between the measurement data (ground truth) and the synthetic data 

generated by the DCCNN. The MSE of each individual test data is in a range between 0.002 to 

0.014, and the mean MSE is 0.006 for the whole test set, which exhibits the high fidelity of the 

synthetic data. The test data can be divided into 4 groups according to their impact locations (Locs. 

5-8) by using different colours. Fig. 13 shows a phenomenon that, with relatively sufficient training 

data, the synthetic vibration data excited by the impact loads, that are close to the midpoint of the 

beam, tend to yield higher accuracy. In contrast, the synthetic vibration data excited by the impact 

loads, that are near to supports of the beam, tend to show a higher error. One possible reason for this 

phenomenon is the imperfect boundary conditions of the beam. When the impact load gets closer to 

the supports of the beam, the vibration tends to be more complex. As a result, the DCCNN is 

relatively more difficult to learn the features for synthetic data when the impact loads are close to 

the supports. 
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Fig. 13. MSE of each test data in Case 1 with the mean value of 0.006

Figs. 14 and 15 demonstrate the test result of the synthetic data generated by the proposed 

DCCNN in the Case 1 training scenario. Two data examples, which have lower and higher MSEs 

than the mean MSE of the whole test set 0.006, are randomly chosen from the test set. The first 

example shown in Fig. 14 is excited by an impact load at Loc. 5, and its MSE is 0.0034. The second 

example shown in Fig. 15 is excited by an impact load at Loc. 8, and the corresponding MSE is 

0.0066. In the two figures, all 9 channels of the synthetic data and the corresponding measurement 

data are compared individually. In Fig. 14 the amplitude, phase, and frequency of the synthetic data 

precisely match the measurement data. In Fig. 15, the amplitudes of the first several periods of the 

synthetic data can be slightly lower than that of the measurement data. The frequency and phase are 

presented correctly. The results demonstrate that the proposed method can successfully synthesize 

the vibration data excited by the loads that are not involved in the training and validation process. 
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Fig. 14. Synthetic data generated by DCCNN (Case 1, impact on Loc. 5, MSE of 0.0034) 

Fig. 15. Synthetic data generated by DCCNN (Case 1, impact at Loc.8, MSE of 0.0066)

To view more details of the synthetic data, Fig. 16 visualises the first 0.1 s of Ch. 5 in Fig. 14. 

Comparing the synthetic data and the corresponding measurement data (ground truth), the synthetic 

data precisely represent the low-frequency components of the measurement data. The difference in 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4412976

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



16

the high-frequency components between the measurement and synthetic data can be observed. The 

waveform of the measurement data has apparent sawteeth, but the waveform of the DCCNN 

synthesised data is smoother, indicating fewer high-frequency components in the synthetic data. 

Such a characteristic of DCCNN makes it feasible to have the additional function of a smoother or 

low-pass filter. 

Fig. 16. First 0.1 s of the Ch. 5 in the synthetic data shown in Fig. 14

Subsequently, to investigate the quality of the synthetic data from the frequency perspective, 

we performed Fast Fourier Transformation (FFT) on the FE simulation, measurement, and synthetic 

data. Ch. 9 of the example (shown in Fig. 14) was visualised in Fig. 17. The subplots in the first row 

are the time-series waveforms, the subplots in the second row are the FFT spectrums in a linear 

scale, and the subplots in the last row are the FFT spectrums in the dB scale. From the linear-scale 

spectrums of the measurement data and synthetic data, two dominant peaks at 62.5 Hz and 110.5 Hz 

can be detected, indicating accurate representations of the natural modes of the beam in the synthetic 

data. In the dB-scale spectrum of synthetic data, the magnitudes over 200 Hz are lower than the 

corresponding measurement data, which proves that DCCNN has the characteristics of low-pass 

filter, and the components higher than about 200 Hz are depressed. 
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Fig. 17. Comparison of FE simulation, measurement, and synthetic data in the frequency domain

(impact at Loc. 5, Ch. 9 of the data example in Fig. 14) 

Furthermore, the mode shapes of the first two bending modes are identified from each synthetic 

and measurement data in the test set using cross spectrum method. The mean mode shapes of the 

test set data are calculated and visualised in Fig. 18, in which the mean mode shapes identified from 

the synthetic data are highly consistent with those of the measurement data. Even though the 

measured mode shapes are apparently different from simulation results, the proposed DCCNN can 

accurately reproduce the mode shape information in the synthetic data. Modal Assurance Criterion 

(MAC), as defined in Eq. (2), is used as an indicator to quantitively evaluate the accuracy of the 

mode shapes identified from the synthetic data. The MACs of the synthetic, FE simulation, and 

measurement data are analysed and visualized in Fig. 19. Overall, the MAC values of the mean 

mode shapes identified from the synthetic data are greater than 0.9742 compared to those of the 

measurement data, indicating the high quality of the synthetic data generated by the DCCNN.

𝑀𝐴𝐶(𝜑𝐴,𝜑𝐵) =
|{𝜑𝐴}𝑇{𝜑𝐵}|2

({𝜑𝐴}𝑇{𝜑𝐴})({𝜑𝐵}𝑇{𝜑𝐵})    (2)
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(a) (b)

Fig. 18. Mean mode shapes identified from the synthetic data generated in Case 1. (a) Mode 1, 1st 

bending mode, (b) Mode 2, 2nd bending mode. 

   
(a) (b)

Fig. 19. MAC of mean mode shapes in Case 1. (a) Mode 1, (b) Mode 2

4.2. Results of Case 2

As obtaining sufficient training data is very difficult or even impossible in many actual 

engineering scenarios, training with a small scale of data has become a natural need for DL 

modelling. To investigate the performance of the proposed DCCNN under the training scenario with 

limited data, in this section, only 180 data with impact at Loc. 1 are used for training, other 21 data 

with impact at Loc. 1 are for validation, and the data with impact at Locs. 5-8 are for testing.

The training histories of losses in Case 2 are shown in Fig. 20. The training loss and validation 

loss were reduced smoothly and simultaneously. No overfitting appeared in the training procedures. 

Finally, the losses reached a 10-5 level, which indicates that the models have learned critical features 

from the measurement data. 
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Fig. 20. Training history of Case 2

To test the performance of the DCCNN model trained with limited data, the MSE of each test 

result is visualized in Fig. 21, which calculates the MSE between the measurement data (ground 

truth) and the synthetic data generated by the DCCNN. The MSE of each individual test data is in a 

range between 0.004 to 0.028, and the mean MSE of the whole test set is 0.014. Interestingly, 

comparing the test results of Case 2 to Case 1, the number of training data in Case 2 is only 28.39% 

of it in Case 1. However, the lower bound, upper bound, and the mean value of the test errors in 

Case 2 are approximately doubled. The test errors in Case 2 are not greatly affected by the sudden 

reduction of training data. Fig. 21 also shows a phenomenon that, only using the data with impact at 

Loc. 1 for training, the MSEs of the synthetic data with impact at Locs. 5-7 are generally in the same 

range, and the MSEs of the synthetic data with impact at Loc. 8 are apparently lower than those of 

Locs. 5-7. One possible explanation for this phenomenon is that the DCCNN has only learned the 

features of the vibration excited by the loads close to the support (Loc. 1). Since Loc.8 is also close 

to the support, and it is in the symmetric position of Loc. 1, better test results were obtained when 

the impacts are in Loc. 8 of the test data. 

Fig. 21. MSE of each test data in Case 2 with the mean value of 0.014
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Figs. 22 and 23 demonstrate the two examples of the synthetic data in the test set, which are 

generated by the proposed DCCNN trained with limited data in Case 2. The two test data are the 

two used in Figs. 14 and 15. The MSEs of the two test examples are 0.0159 and 0.0081, which are 

higher and lower than the mean MSE of the whole test set (0.014), respectively. Observing Figs. 22 

and 23, when trained with limited data, even though the amplitudes of the synthetic data are not as 

accurate as those in Figs. 14 and 15 in Case 1, the DCCNN can successfully learn the dominant 

features of the vibration, like frequencies and phases. 

Fig. 22. Synthetic data generated by DCCNN (Case 2, impact at Loc. 5, MSE of 0.0159) 
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Fig. 23. Synthetic data generated by DCCNN (Case 2, impact at Loc.8, MSE of 0.0081)

Then, to investigate the quality of the synthetic data in the frequency domain, we performed 

FFT on the FE simulation, measurement, and synthetic data. Using Ch. 6 in Fig. 23 as an example, 

as visualised in Fig. 24, the subplots of waveforms in the first row show the amplitudes of the 

synthetic data lose some accuracy with the reduction of training data. In the FFT subplots in the 

second and third rows, the two peaks indicate the synthetic data can successfully reproduce the mode 

features. In the dB-scale spectrum of synthetic data, the magnitudes over 100 Hz show also lower 

accuracy than the corresponding measurement data, which proves that DCCNN has the 

characteristics of low-pass filter, and the components higher than about 100 Hz are depressed. 
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Fig. 24. Comparison of FE simulation, measurement, and synthetic data in the frequency domain

(impact at Loc. 8, Ch. 6 of the data example in Fig. 23) 

Meanwhile, the accuracies of the mean mode shapes identified from the synthetic data in the 

test set of Case 2 are also analysed. Fig. 25 compares the identified mean mode shapes of the 

synthetic data in the whole test set to those of the FE simulation and measurement data. Both Modes 

1 and 2 can be identified from the synthetic data. The consistencies of the identified mode shapes 

are shown in Fig. 26. The values of MAC for all the identified mode shapes are higher than 0.98, 

indicating the accurate representation of the proposed networks even with limited training data. 

    
(a)    (b)

Fig. 25. Mode shapes identified from the synthetic data generated in Case 1. (a) Mode 1: 1st 

bending mode, (b) Mode 2: 2nd bending mode. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4412976

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



23

    
(a)  (b)

Fig. 26. MAC of mode shapes in Case 2. (a) Mode 1, (b) Mode 2 

5. Conclusions

In this paper, we proposed a novel method to synthesise high-fidelity time-series data. The 

proposed method consists of experiments, FE simulation, and space projection using DL. Low-

fidelity FE simulation data can be transferred to high-fidelity measurement data in an end-to-end 

manner. A DL model DCCNN was designed for this projecting task. Both physical and numerical 

vibration experiments were performed to test the proposed method. The remarkable quality of the 

synthetic data demonstrates the effectiveness of the proposed method. Some detailed conclusions 

are drawn as follows.

First, the proposed method can accurately synthesise the vibration data excited by the loads 

that were not used for training and validation. This shows the applicability of the proposed method 

for synthesising high-fidelity structural dynamics when the desired loads are not available or cannot 

be applied on real structures. 

Second, the proposed method can generate realistic synthetic vibration data of structures 

without performing FE model updating. Compared to the measurement data acquired directly from 

the structure, the synthetic vibration data are very accurate when observed in the time domain, 

frequency domain, natural frequencies, phase, amplitude, and mode shapes. The high-quality 

synthetic data also indicates the rationality of the design of the DCCNN for the data synthesis task.  

Third, the proposed DCCNN has the characteristics of low-pass filter. When in the normal 

training case with sufficient training data, DCCNN tends to depress the components higher than 200 

Hz. When training with limited data, the DCCNN tends to depress the components higher than 100 

Hz. Such a feature makes the DL models can be considered with an integrated noise reducer. 

The proposed method can contribute to all the downstream tasks, for instance, analyses of 

structural dynamic behaviours, design optimisation, data-driven identification tasks, etc., which 

request time-series simulation data. Our future work will be focused on addressing the following 

limitations. First, the performance of the proposed data synthesis method with other types of loads 
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and structural responses is unknown. Excitations with actuators and forced vibration data will be 

used to further test and update the proposed method. Second, the DCCNN needs to be slightly 

refined when the structure and corresponding FE model are changed. Our next work includes the 

development of a method to model the domain shift and avoid the data required for refining the 

DCCNN when the structure and FE model are changed. This aims to synthesise dynamic responses 

of the structure with specified non-existent changes or damage. 
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