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ABSTRACT: Due to the dynamic fluctuations caused by vehicle-bridge interaction and 
road roughness, the influence line (IL) cannot be obtained directly from bridge responses. 
This paper proposes a rapid method for identifying bridge IL using bridge dynamic responses. 
Initially, analytical solutions for the IL of a simply supported bridge are presented. To address 
dynamic fluctuations, empirical mode decomposition is utilized to decompose bridge 
responses into intrinsic mode functions to approximate quasi-static response. Subsequently, 
the equations based on residual bridge responses induced by forward and reverse passages, 
which can automatically remove the scale error of IMFs, are introduced to calculate the 
bridge’s IL at discrete points. Furthermore, cubic spline interpolation, with boundary condi
tions, is used to obtain the complete IL. Numerical simulations, incorporating a two-axle 
vehicle and a simply supported bridge, are conducted to verify the effectiveness of the pro
posed method. Results show a close match between identified IL and analytical results.

1 INTRODUCTION

Bridge structures have played a crucial role in enhancing the efficiency of transportation. 
Nevertheless, recent studies have highlighted issues related to the degradation and aging of 
existing bridge systems (Li et al., 2023b, 2024b), raising concerns about potential threats to 
transportational safety. The bridge influence line (IL), considered a fundamental characteris
tic, serves as a valuable source of information regarding a bridge’s health, load-carrying cap
acity, and weigh-in-motion system. This aspect has garnered significant attention from 
scholars (Zheng et al., 2022). The quasi-static nature of IL contributes to its high signal-to- 
noise ratios. Furthermore, the determination of IL typically involves only one sensor at the 
measurement point, making the assessment of bridge conditions more economically viable.

The structural IL is closely associated with the quasi-static response resulting from moving loads. 
When a unit of concentrated force moves along the structure, the response at a specific measure
ment point, encompassing displacements, strains, and rotation angles, can be defined as the IL at 
that point. In the context of bridges, IL identification can be categorized into two methods: static 
loading and vehicle loading (Deng et al., 2023). In the former, the bridge is divided into elements, 
and a known concentrated force is sequentially applied to all nodes. The discrete ILs at all nodes 
can then be obtained by normalizing the bridge’s quasi-static response with the force value. While 
intuitive, this method can be labor-intensive and time-consuming in practical engineering applica
tions. The latter method, the vehicle loading approach, is more commonly employed due to its 
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efficiency and convenience. Responses at specific points on the bridge due to the passage of 
a calibration vehicle are collected to identify corresponding ILs. Calibration vehicle parameters, 
such as axle weights, distance, and counts, are typically measured meticulously before the field test. 
Following the extraction of ILs from bridge responses, the bridge’s condition can be assessed based 
on visual observations, IL variations, or direct stiffness estimation (Ge et al., 2023). However, 
during the vehicle’s passage, the response recorded by the bridge is influenced by vehicle-bridge 
interaction (VBI) rather than static moving loads, especially when considering road roughness (Li 
et al., 2024a; Xu et al., 2024). This introduces challenges to the identification of ILs for bridges 
when utilizing vehicle loading method.

In the last decades, considerable efforts have been devoted to identifying ILs from bridge 
responses. Recognizing that bridge response can be constructed by the superposition of multiple 
weighted bridge ILs, Hirchan and Chajes (2005) proposed a method in 2005 to identify ILs by 
superposing weighted bridge responses, utilizing two passages of vehicles with different axle weights. 
In 2006, OBrien et al. (2006) introduced a least squares method for extracting bridge ILs from 
measured responses of a bridge due to multiple-axle vehicular passages. However, due to VBI 
effects and environmental noise, the extracted ILs may deviate from the real one. In an attempt to 
address sensitivity to perturbations, Ieng (2015) proposed a Maximum Likelihood Estimation 
(MLE)-based algorithm in 2015, and the effectiveness of this method was verified on the Millau 
Viaduct with weigh-in-motion devices. Additionally, the author suggested fusing IL identification 
results from multiple calibration vehicles to enhance accuracy. Assuming constant vehicle axle load
ings and invariant speed, Chen et al. (2015) established the relationship between the vehicle loading 
matrix, IL vector, and bridge response vector in 2015. However, dynamic fluctuations can easily 
influence bridge responses. To mitigate this issue, Tikhonov regularization was applied to penalize 
influence coefficients, and a moving average filter was employed to suppress bridge response fluctu
ations (Chen et al., 2016). In 2017, Wang et al. (2017) proposed a fitting algorithm using piecewise 
polynomials and harmonic sinusoids based on theoretical solutions of bridge ILs under different 
boundary conditions and observations of bridge vibrations. They found that the bridge’s dynamic 
responses could be separated into dynamic fluctuation and quasi-static parts. The method was then 
verified by numerical simulations including different types of bridges, and the superior capability 
was observed compared to the direct inverse calculation method. These studies underscore the 
importance of removing dynamic fluctuations to prevent errors in bridge IL identification. Add
itionally, addressing the ill-posed inverse problem for the vehicle loading matrix in direct inverse 
calculation methods can be crucial. Recently, it has been found that empirical mode decomposition 
(EMD) can be an effective tool for extracting the quasi-static part from the bridge’s dynamic 
responses (Zheng et al., 2020). However, this study did not include the effects of road roughness, 
which was demonstrated significant in the VBI process and typically was not ignorable in engineer
ing applications (Lan et al., 2023, 2024; Xu et al., 2023). EMD can decompose signals without any 
prior knowledge of the signal as well as the VBI system and therefore can be potential for automatic 
quasi-static extraction from the bridge’s dynamic responses. Furthermore, existing methods typically 
require complex computations, which may be difficult for engineers to apply in practical applica
tions. Therefore, a relatively easy-to-operate and robust solution is imperative.

This paper proposes a rapid bridge IL identification approach using bridge dynamic responses 
during two passages of a two-axle vehicle. Firstly, the analytical IL of a simply supported bridge is 
introduced. Then, after the bridge’s dynamic responses due to VBI and road roughness in the for
ward and reverse passages are obtained, the EMD is employed to eliminate the fluctuation part in 
the signal and extract the approximate quasi-static responses of the bridge. Third, equations based 
on residual bridge responses for bridge IL identification are further derived, which can automatic
ally eliminate the scale error caused by the EMD and avoid the calculation of the inverse of the 
vehicle loading matrix. The discrete IL points can further be obtained. Finally, by combining the 
boundary conditions, the cubic spline interpolation is utilized to obtain the entire bridge IL. Numer
ical simulations including a two-axle vehicle and a simply supported bridge are performed to verify 
the proposed method, and different influence factors, such as vehicle gravity center positions, vehicle 
speeds, measurement points, road roughness classes, and environmental noises are examined. It is 
worth noting that in this study, the bridge’s displacement IL is the object of our investigations. The 
remainder of this paper is organized as follows. Section 2 introduces the theoretical foundations for 
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bridge IL identification using its dynamic responses under two passages. Section 3 presents numer
ical simulations including two case studies to verify the proposed method. Finally, this paper is con
cluded in Section 4.

2 THEORETICAL FOUNDATION

In this section, the analytical solutions for the influence line of a simply supported beam are first 
introduced, which serves as the ground truth for verifying the IL identification in this work. 
Then, theories for identifying the IL using two passages of a two-axle vehicle are introduced.

2.1  Theoretical influence line

As is defined, the influence line denotes the responses of one position under the moving quasi- 
static unit force. In this work, the identification of displacement IL for bridges is investigated. 
As shown in Figure 1, when the unit force is applied at x, then the bridge’s static response at 
the measurement point can be obtained accordingly. The analytical solutions for the displace
ment IL of a simply supported beam are piecewise, as shown in Equation. (1),

f xð Þ ¼
a� lð Þx3þ a3� 3la2þ2l2að Þx

6lEI 0 � x5að Þ

ax3 � 3lax2þ 2l2aþa3ð Þx� la3

6lEI a � x � 1ð Þ

8
<

:
ð1Þ

where l represents the span length of the bridge; E means Young’s modulus; I is the moment 
of inertia of its cross-section. Assuming that the left end of the bridge is the origin of the x- 
axis, we utilize a to denote the distance between the measurement point and the origin. x is the 
position of the moving unit force. After the above parameters are determined, the bridge’s IL 
can be analytically calculated, as illustrated by the dotted line in Figure 1.

2.2  Proposed influence line identification method

In practical engineering, applying a moving concentrated force to a bridge can be inherently 
challenging. Consequently, acquiring ILs directly can be challenging. Prior research has pro
posed using load tests for the identification of bridge ILs, where heavy vehicles are commonly 
employed to apply moving forces (Deng et al., 2023). However, it has been confirmed that the 
passage of vehicles induces dynamic VBI rather than quasi-static responses. Additionally, cali
bration vehicles often feature multiple axles with varying weights, making direct utilization of 
the obtained bridge responses impractical. This section introduces the IL identification 
method proposed in this work.

2.2.1 Brief on structural responses induced by vehicle-bridge interaction
When utilizing a vehicle as the excitation source, it becomes essential to consider the effects of 
vehicle-bridge interaction in the bridge’s responses, rather than simply treating the vehicle’s 
axle weights as moving forces. In this study, a two-axle vehicle is employed for bridge IL iden
tification, as illustrated in Figure 2. The vehicle exhibits four degrees of freedom (DOFs), 
denoted by red arrows: body bounces zv, body pitching θv, front and rear wheel bounces zw1 

Figure 1.  Analytical influence line.
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and zw2. It possesses a body mass mv, a body moment of inertia Iv, and two-wheel masses mw1 
and mw2. Also, it features the individual suspension system with stiffness ks1; ks2 and damping 
cs1; cs2, along with the wheel stiffness kw1; kw2 and damping cw1; cw2. The vehicle body’s 
center of gravity is determined by d1 and d2, with the axle distance being d ¼ d1 þ d2. When 
the vehicle is stationary on the bridge, the weights of front and rear axles can be calculated 
using Equation. (2). However, during the vehicle’s passing process, due to the influence of 
VBI responses and road roughness. P1 and P2 will change, causing dynamic bridge responses.

P1 ¼
mvd2 þmw1d1 þmw1d2

d1 þ d2
g; P2 ¼

mvd1 þmw2d1 þmw2d2

d1 ¼ d2
g ð2Þ

2.2.2 Approximation of quasi-static deflections using EMD decomposition
Typically, the displacement obtained at the measurement point due to VBI is dynamic. In this 
study, EMD is employed to eliminate the dynamic fluctuation in the acquired displacement. 
Through EMD, the original bridge deflections under the vehicle’s loads can be decomposed 
into several intrinsic mode functions (IMFs). In this investigation, the quasi-static part of the 
bridge’s displacement exhibits a sinusoidal function as the main trend, while the dynamic part 
is primarily locally distributed. To accurately capture the quasi-static part, a high maximum 
number of IMFs is set to fully decompose the signal.

In this work, the vehicle is assumed to pass the bridge at a constant speed in both forward 
and reverse directions, as shown in Figure 3. Denoting the bridge’s deflection when the vehicle 
is moving forward as Rf tð Þ and when moving in reverse as Rr tð Þ, EMD is applied to decom
pose the deflection at the measurement point, and the appropriate IMF is selected. This pro
cedure is represented by Equation. (3).

Ri
IMF tð Þ ¼ EMD Ri tð Þ

� �
; i ¼ f ; r: ð3Þ

Figure 2.  Vehicle-bridge interaction model.

Figure 3.  Two passages of the vehicle.
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After the above operation using EMD, the bridge’s dynamic response can be partially elim
inated, and the approximated quasi-static deflection can be acquired for later analysis.

2.2.3 Influence line identification
To be uniform with the representation of IL, the independent variable t in Equation. (3) was 
replaced by the axle’s position x on the bridge. Assuming that the vehicle’s quasi-static deflection 
at the measurement point can be approximately obtained in the forward and reverse direction 
passages by Equation. (3). For R̂f

IMF xð Þ, we can directly replace t in Rf
IMF tð Þ by x ¼ vt. However, 

for R̂r
IMF xð Þ, the response must be flipped to align the positions of axles, see Equation. (4),

R̂f
IMF xð Þx ¼ vtRf

IMF tð Þ

R̂r
IMF xð Þx ¼ vtFlip Rf

IMF tð Þ
� �

8
<

:
ð4Þ

where Flip means flipping the time sequence. As mentioned, assuming the known weights of the 
moving vehicle’s front and rear axles are P1 and P2, respectively, we can obtain the representa
tions of bridge responses in forward and reverse directions, as shown in Equations. (5) and (6).

P2f xð Þ þ P1f xþ dð Þ ¼ R̂f
IMF xð Þ ð5Þ

P1f xð Þ þ P1f xþ dð Þ ¼ R̂r
IMF xð Þ ð6Þ

Here, R̂f
IMF xð Þ and R̂r

IMF xð Þ can be directly obtained by sensors installed on the bridge and 
the EMD. In this paper, the deflection at the measurement point is employed, which can be typ
ically measured by linear variable differential transformers, laser displacement sensors, com
puter vision techniques, and so on. By subtracting Equation. (6) from Equation. (5), we can get

f xð Þ � f xþ dð Þ ¼
R̂r

IMF xð Þ � R̂f
IMF xð Þ

P1 � P2
: ð7Þ

Furthermore, for the identification of IL, the boundary conditions are Equation. (8).

f 0ð Þ ¼ f lð Þ ¼ 0 ð8Þ

Therefore, by substituting Equation. (8) into Equation. (7), we can get f dð Þ; f 2dð Þ; � � � ; f ndð Þ, in 
which n means the integer part of l=d. In engineering, the curve obtained by Equation. (3) cannot 
match the quasi-static response perfectly due to the influence of road roughness and VBI. When 
the vehicle’s axles pass the same road roughness point, the influence of road roughness can also be 
weakened using Equation. (7). From Equation. (1), it can be known that the IL is a piecewise cubic 
function of x. After Equation. (8) and f 0ð Þ; f dð Þ; f 2dð Þ; � � � ; f ndð Þ and f lð Þ are obtained, cubic 
spline interpolation can be employed to acquire the IL values at other points of the bridge.

3 NUMERICAL SIMULATIONS

3.1  Parameters of the VBI system

In this section, numerical simulations are employed to verify the effectiveness of the proposed 
method in this paper. Parameters of the vehicle are as follows: body mass mv ¼ 542:5kg, body 
moment of inertia of Iv ¼ 550kg �m2, wheel masses mw1 ¼ mw2 ¼ 40kg, suspension stiffness 
ks1 ¼ ks2 ¼ 1� 104N=m, suspension damping cs1 ¼ cs2 ¼ 2� 103N � s=m, wheel stiffness 
kw1 ¼ kw2 ¼ 1:5� 105N=m, and wheel damping cw1 ¼ cw2 ¼ 430N � s=m.The constant param
eters are d1 ¼ 1:0 m and d2 ¼ 1:87 m, and thus the axle distance d ¼ 2:87m. When passing the 
bridge, the vehicle’s speed is set as 2m=s.

The finite element (FE) model of the bridge is shown in Figure 4, it has a length l ¼ 30m and 
flexural stiffness EI ¼ 2:5� 1010N=m2. In dynamic response generation due to the VBI, its 
mass of unit length is ¼ 6000kg=m. The bridge is divided into 10 elements, and each element 
has a length of 3:0m. Nine displacement sensors, S1~S9, are installed on the intermediate nodes 
to collect bridge deflections when the vehicle passes the bridge, as shown in Figure 4.
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During the VBI process, the road roughness plays an important role as it can enhance the amp
lification of interaction responses (Li et al., 2024c). Also, it can increase dynamic fluctuations of 
the bridge’s response, posing challenges to extracting quasi-static responses from collected signals. 
In this paper, the road roughness is generated according to ISO 8608 (2016) based on the power 
spectral density function. Compared to normal road roughness, the pavement of bridges typically 
is well maintained and therefore can be categorized as very good. In this section, Class A road 
roughness with Gd n0ð Þ ¼ 4� 10� 6 m3 is employed. Moreover, in practice, the contact between 
the vehicle’s tire and bridge pavement is an area instead of a point. To eliminate this effect, 
a moving average filter was utilized to smooth the point-wise road roughness. The length of gen
erated road roughness is 30+2.87+2.87=35.74 m. The vehicle starts to move when its front axle is 
on the bridge’s left end and stops when the rear axle leaves its right end.

Figure 4.  FE model of the bridge and measurement sensors.

Figure 5.  Identification of bridge IL with Class A road roughness: (a) bridge responses, (b) EMD on 
bridge responses under vehicle’s forward passage, (c) EMD on bridge responses under vehicle’s reverse pas
sage, (d) approximate quasi-static bridge response using EMD, (e) residual deflection, (f) IL identification.
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3.2  Case study on IL identification

In engineering applications, road roughness has the potential to amplify the responses of 
the VBI system (Li et al., 2023a). Consequently, the dynamic fluctuation becomes more 
pronounced, presenting challenges in identifying the quasi-static responses of the bridge. 
This section initially delves into Class A road roughness. The bridge’s responses, collected 
by S6 in Figure 4 during the two passages of the vehicle, have been plotted in Figure 5a. 
It is evident that the influence of road roughness magnifies the dynamic fluctuation in 
the bridge’s responses, particularly noticeable in the middle part of the passage.

Figure 5b and 5c present the results of Rf tð Þ and Rr tð Þ using EMD. We can see that EMD 
continues to capture the approximate quasi-static response of the bridge, with the utilization of 
IMF 3 in this case. The extracted approximate quasi-static responses are illustrated in Figure 5d. 
Despite the dynamic components not being entirely eliminated, as evidenced in the zoom-in figure 
in Figure 5d. The residual deflection during the two vehicle passages is shown in Figure 5e. It is 
observed that the residual trend, denoted as f xð Þ � f xþ dð Þ½ � P1 � P2ð Þ, is well-tracked.

The results of bridge IL identification using the proposed approach are illustrated in Figure 5f. 
Notably, the identified IL (represented by the yellow solid line) closely aligns with the analytical 
one (denoted by the black solid line). This alignment signifies the effectiveness of the proposed 
method in identifying the bridge’s IL, even in the presence of road roughness within the VBI 
system. To assess the bridge IL identification results using the proposed method, two commonly 
used criteria, overall relative error (ORE) and peak relative error (PRE), are utilized (Zheng et al., 
2019). They can be calculated using Equation. (9) and (10), respectively,

ORE ¼
�analytical � �identified
�
�

�
�

1

�identifiedk k1
� 100% ð9Þ

PRE ¼
�analytical
�
�

�
�
∞ � �identifiedk k∞

�identifiedk k∞

�
�
�
�
�

�
�
�
�
�
� 100% ð10Þ

where fanalytical means the analytical IL of the bridge, and fidentified denotes the bridge IL 
identified from responses collected by sensors installed on the bridge. In this section, when the 
Class A road roughness is considered, the two criteria can be obtained as 1.17% and 0.73%. It 
can be seen that relative errors are typically within 5%, which is acceptable in engineering 
applications (Zheng et al., 2020).

4 CONCLUSION AND FUTURE WORK

This paper proposes a rapid IL identification approach for bridges using dynamic responses 
induced by vehicles. Firstly, the analytical solutions for a simply supported bridge are pre
sented. Then, for the removal of the dynamic fluctuations caused by the interaction between 
the vehicle and bridge, the EMD is utilized to approximate the quasi-static responses of the 
bridge. Finally, equations based on residual bridge responses under two vehicular passages for 
IL identification are derived. Numerical simulations including a two-axle vehicle, a simply 
supported bridge, and road roughness, are performed to verify the proposed method. Several 
concluding remarks are drawn below.

1) The proposed method can rapidly identify the bridge’s IL with good precision when Class 
A road roughness is considered. ORE and PRE values are within 5% and acceptable in 
engineering.

2) EMD can help to remove the fluctuations in bridge responses with no prior knowledge of 
the vehicle and bridge even if the road roughness is included in the VBI process.

Even though promising results have been obtained in this research, our future studies will 
explore IL identification using multiple-axle vehicles and the effectiveness of this method through 
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laboratory experiments and field tests. Also, the spatial effects of the vehicle will be investigated, 
which extends the bridge IL identification to the bridge influence surface identification.
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