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 1 Introduction 

Bridge structures serve as fundamental elements in 

worldwide transportation systems. A considerable number 

of bridges built in Europe last century have surpassed 50 

years of service life [1]. The process of aging and 

deterioration has emerged as a serious problem, which 

presents both operational threats and structural 

weaknesses. For example, the collapse of the Morandi 

bridge in 2018 was a typical case, which underlined the 

importance of continuous maintenance.  Bridges now face 

performance challenges due to escalating traffic and social 

changes that require updated standards. Regular health 

checks are essential for aging structures, as elevated loads 

can exceed their strength capacity. 

Visual inspection, traditionally used to evaluate bridge 

conditions, has established itself as a main method for 

detecting surface failures on bridges. The established 

inspection technique encounters multiple major limitations 

because it requires engineering expertise, long periods of 

work, and extensive manual effort. The rising numbers of 

bridges being constructed faster and larger has made 

visual inspection inadequate for contemporary bridge 

monitoring needs. Damage assessment reliability suffers 

from subjective inspector judgments through this 

examination method, which leads to possible errors and 

inconsistent results. 

The start of the 21st century has witnessed the 

development of structural health monitoring (SHM) 

systems for continuous bridge condition assessments [2]. 

The primary focus of SHM systems combines data 

acquisition with processing, followed by damage alert 

systems and prognostic estimates for remaining 

operational periods. Damage detection stands out as a 

crucial task in SHM systems because it allows engineers to 

adopt proper maintenance and repair approaches. The 

implementation of SHM systems includes placing different 

sensors across bridges to measure their health status. The 

detection equipment consists of fiber optic sensors [3,4], 

piezoelectric sensors [5], global navigation satellite 

system sensors [6], magnetostrictive sensors [7], and 

other forms of sensors. These devices detect various 

structural data points before further analysis proceeds. 

The monitoring algorithms benefit from improved 

robustness because of data collection on external 

operational factors, which include temperature and 
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humidity along with traffic conditions [8]. The vibration-

based SHM methods represent promising techniques 

because they offer effective non-destructive assessments 

for bridge conditions. 

The traditional implementation of bridge monitoring 

through vibration methods mostly depends on modal 

parameters used to evaluate structural health by 

analyzing natural frequencies, mode shapes, and damping 

ratios. When operating under real conditions, these modal 

parameters demonstrate a limited ability to detect small 

mechanical failures or corrosion at early stages. Engineers 

typically encounter this damage type during practical use, 

but its effect on dynamic characteristics remains difficult 

to detect due to hardly noticeable changes [9]. No 

alternative dynamic fingerprinting methods proposed over 

the last few decades have managed to overcome 

operational conditions and environmental factors, which 

continue creating obstacles for effective damage 

identification in real-world applications [10]. 

Artificial Intelligence (AI) techniques have experienced 

substantial development since software and hardware 

innovations have driven their progress across the previous 

few decades. The wide range of implementation areas for 

machine learning (ML) includes other domains as well as 

SHM [11–13]. The feature-learning capability of deep 

learning (DL) makes it a leading method for automatic 

bridge health condition assessment [14]. The high 

sensitivity to anomalies characteristic of DL network 

systems enables effective detection of small structural 

damage. The implementation of AI techniques for bridge 

health monitoring (BHM) has grown significantly over 

recent years to solve multiple problems within the domain. 

Research papers have investigated various methods of 

SHM that utilize AI techniques. The application of bridge 

monitoring through ML algorithms has been thoroughly 

summarized by Sonbul and Rashid [15], which included 

decision trees, random forests, support vector machines, 

k-nearest neighbors, as well as diverse neural network 

architecture implementations. Cha et al. [16] underwent 

through a detailed examination of DL-based SHM systems 

by explaining fundamental DL principles and mentioning 

recent practical applications. However, the existing 

reviews were published before early 2023. Multiple 

advanced ML and DL approaches have appeared during 

the last two years. For example, when two keywords 

“machine learning” and “bridge health monitoring” are 

utilized in Scopus database, 79 articles and 59 conference 

papers can be found from 2023 to 2025. Given the fast-

growing field, a new extensive literature review is needed.  

The current paper conducts an extensive review of 

vibration-based BHM that employs AI techniques. Section 

2 demonstrates how AI techniques are implemented in 

BHM applications. Section 3 discusses existing approaches 

to BHM, including their weaknesses and potential 

directions for upcoming investigations. Finally, Section 4 

provides concluding remarks. 

2 Applications of AI in BHM 

This section explores three key areas in AI-driven BHM: 

data anomaly detection, data recovery, and bridge 

damage detection. Among these, damage detection can be 

categorized into direct and indirect methods. The direct 

method involves installing sensors directly on the bridge 

to collect structural responses. This approach provides 

detailed and accurate data on bridge behavior, making it 

highly informative for health assessment. However, its 

implementation is often costly due to the need for multiple 

sensors to measure various system responses [17]. Also, 

a large amount of data will be collected and need to be 

addressed [18]. Conversely, the indirect method utilizes 

vehicle response data, where only a few sensors, typically 

installed on a moving vehicle, are required [19–21]. This 

technique is more cost-effective and convenient, as it 

eliminates the need for extensive sensor networks on the 

bridge itself. Nevertheless, extracting bridge-specific 

information from vehicle data presents challenges due to 

interference from vehicle dynamics and road roughness 

effects, which can obscure structural signals [22]. This 

section provides an in-depth discussion of these 

applications, highlighting recent advancements in AI 

techniques for each category. The outline of this section is 

shown in Figure 1. 

 
Figure 1 Outline of AI applications in BHM. 

2.1 Data anomaly detection 

BHM monitors bridge health from start to finish of its total 

service period. Extreme weather or other conditions can 

damage sensors, which produce either poor-quality data 

or data containing useless information. Duration-based 

quality assessment of data must take place continuously 

so that users can detect deviations before these deviations 

get included within the analysis. 

In 2023, Ye et al. [23] created a DL-based anomaly 

detection technique for SHM systems with environmental 

sensitivity. The method used wavelet scalograms to 

generate RGB images from time-series data while 

classification occurred through the application of a 

convolutional neural network (CNN) architecture based on 

GoogLeNet [24]. The identified method performed better 

than traditional approaches in detecting bridge anomalies 

on cable-stayed structures while dealing with restricted 

data availability. The assessment process experienced an 

increase in reliability due to reduced false alarms together 

with better structural evaluations. Lei et al. [25] developed 

a residual attention network that detected anomalies in 

SHM data. Mutual information-based preprocessing 

enabled the method to achieve good classification 

accuracy results. The proposed detection method 

exceeded established models by demonstrating 

exceptional capabilities in anomaly detection across all 

cases. Pan et al. [26] introduced a transfer learning 

approach for identifying anomalies in SHM. The network 

used data from one bridge which it had pre-trained on to 

process limited data from another bridge, enabling better 

accuracy results. The experimental validation on two 

bridges proved that this method provided better 
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classification results using fewer training sets to show its 

potential for complex BHM analyses. Research in SHM 

directed its focus on developing real-time anomaly 

detection systems. In 2024, Kang et al. [27] developed an 

ML-based alert system for continuous bridge monitoring 

through their process of transforming one-dimensional 

time-series sensor data into two-dimensional tensors. The 

model acted as an encoder to boost structural behavior 

analysis; thus, it surpassed conventional threshold-based 

monitoring methods when detecting sensor deviations and 

structural anomalies. 

Data anomaly detection helps engineers identify sensor-

related issues early, allowing them to take timely 

corrective measures and ensure data quality for 

subsequent analysis. 

2.2 Data recovery 

Data loss occurs due to sensor malfunctions along with 

transmission errors, while the analysis suffers as well as 

the extraction of meaningful insights becomes limited. 

Different approaches have been investigated for missing 

data recovery through accessible available data sources. 

Research workers add data recovery results to current 

data collections to support a better evaluation of the 

bridge health condition status.  

In 2023, the DL-based approach for missing structural 

response data recovery in SHM was introduced by Du et 

al. [28]. A multi-modal autoencoder formed the core of 

their method because it managed to detect temporal 

patterns alongside spatial structures, along with 

heterogeneous data correlations between sensor data. The 

bridge dataset demonstrated higher accuracy than 

standard imputation methods because it excelled at 

handling extensive data gaps, which positively affected the 

performance of SHM systems. Xin et al. [29] created a 

signal restoration system for BHM based on time-varying 

filtering-based empirical mode decomposition (TVF-EMD) 

associated with an encoder-decoder long short-term 

memory (ED-LSTM) model. The signals delivered by TVF-

EMD decomposition led to intrinsic mode functions that 

were forecasted with ED-LSTM. Their solution, evaluated 

with genuine bridge measurements, performed better 

than standard approaches, thus creating more dependable 

and precise data recovery results. Lu et al. [30] presented 

an acceleration data restoration framework built with 

BiLSTM for SHM applications. The research method 

effectively detected spatial-temporal patterns, which led 

to better performance compared to traditional ML 

approaches. The assessment of the Z-24 bridge, coupled 

with the long-span bridge, demonstrated a high accuracy 

level, which confirmed the methodology's capability to 

enhance structural assessment and damage detection 

processes in SHM systems. 

In 2024, Zhang et al. reviewed SHM data recovery 

methods [31]. The authors structured their analysis by 

dividing SHM data recovery methods into finite-element 

and sparse representation and statistical inference in 

addition to ML-based approaches while showing what 

made each method strong or weak. The research 

documented both current dilemmas and anticipated 

developments within SHM data recovery procedures. An et 

al. [32] developed a compressive sensing method for 

structural vibration response reconstruction by using DL 

principles. A dual-branch neural network from their 

approach processed frequency domain real and imaginary 

components to provide better reconstruction results than 

traditional methods that used sparsity assumptions. The 

laboratory experiment with a grandstand structure proved 

that this method delivered excellent results for efficient 

SHM data collection. Shi et al. [33] developed a 

reconstruction algorithm for bridge vibration responses 

from railway trains to boost damage evaluation in heavy-

haul railway bridges. The proposed framework used an 

enhanced deep densely connected neural network for data 

reconstruction with an alternate down-sampling residual 

network for damage identification. The system underwent 

testing using genuine bridge data to prove its ability to 

improve anomaly detection accuracy. 

Engineers can potentially achieve full bridge behavior 

understanding through continuous analysis which 

becomes possible after recovering the entire dataset. This 

data recovery procedure enables detection of the 

downstream work, such as damage detection. 

2.3 Bridge damage detection 

In BHM, a key task is detecting potential bridge damage, 

which helps engineers develop maintenance strategies and 

extend the bridge’s service life. Depending on the sensor 

installation positions, damage detection methods are 

categorized into two types: direct and indirect. Each 

method is further classified into two approaches: 

supervised learning and unsupervised learning. 

2.3.1 Direct method 

Supervised learning. Over the past two years, 

researchers have been exploring supervised learning 

techniques. This approach requires labelled data to train 

the model, enabling it to identify features in unseen data. 

In 2023, Svendsen et al. [34] presented a hybrid SHM 

framework connecting experimental data to numerical 

modeling for steel bridge damage identification. The 

authors created synthetic data through finite element 

model calibration under different conditions, which allowed 

them to develop a ML model for detecting structural 

anomalies across environmental change. The damage 

identification technique showed improved outcomes 

through this method, compared to the approach without 

hybrid SHM processes. Sarwar and Cantero [35] built a 

probabilistic deep neural network system that used 

vehicle-based data for bridge damage evaluation. The 

method integrated observation data from bridges and 

vehicles and used probabilistic DL to measure prediction 

uncertainty. Various numerical analyses under diverse 

operating and environmental environments showed how 

this detection system achieved precise results by reducing 

both measurement noise and temperature fluctuations 

along with random traffic disturbances. Modal analysis of 

bridge structures implemented ML algorithms as part of its 

operational framework. Mao et al. [36] developed a 

computerized operational modal analysis system, which 

specialized in analyzing long-span bridges. A combination 

of convolutional autoencoder technology refined modal 

frequency identification, while the self-organizing map 
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(Kohonen network) performed mode classification within 

this approach. Real bridge data analysis, along with 

simulations, demonstrated that this system operated 

proficiently for structural parameter observation while 

decreasing human involvement in the process. The topic 

of explainable ML models became important within the 

field of SHM. Cardellicchio et al. [37] established an AI 

framework that automatically detected defects in 

reinforced concrete bridges using methods with 

explainable AI features. A set of CNNs trained on genuine 

defect photos achieved model interpretation through Class 

Activation Maps. Tests of historical bridges demonstrated 

that this approach strengthened damage evaluation and 

maintained degraded facilities throughout their lifespan. 

Prediction models were used for detecting changes in the 

dynamic characteristics of bridge behavior. The research 

team of Ye et al. [38] designed an ML-based system that 

detected wind-induced vibrations in cable-stayed bridges 

at an early stage. The authors established a predictive 

system for girder and tower vibrations through the use of 

random forest modeling on real bridge data acquired from 

typhoon conditions. Structural safety increased through 

predictive forecasting because this technology enabled 

precautionary decision-making when wind conditions 

deteriorated. Noori Hoshyar et al. [39] examined ways to 

enhance the classification methods in SHM through their 

study. The authors created four support vector machine 

(SVM)-based methods to enhance classification results by 

implementing integrated solutions for data 

misclassification and combined kernel approaches. New 

laboratory-established models demonstrated superior 

results against standard SVM in crack identification tasks, 

thus providing better automated bridge infrastructure 

damage assessment methods. Xu et al. [40] delivered a 

comprehensive overview of ML applications to concrete 

and steel bridge damage detection and assessment 

through their review of numerous ML techniques. The 

authors analyzed current methods by categorization and 

described preprocessing difficulties before assessing 

method performance. Standardized image-based damage 

detection approaches, together with transformer models 

and physics-informed approaches, provided opportunities 

to enhance SHM reliability according to the review. 

In 2024, the field of damage detection also employed 

hybrid ML approaches using minimal actual data. The 

supervised learning system developed by Bud et al. [41] 

unified real bridge monitoring information with simulated 

finite element model outputs. This methodology assisted 

classifiers in carrying out damage detection together with 

localization and classification functions even when real 

damage data was scarce. The framework, assessed using 

Z-24 Bridge benchmark data, demonstrated 

environmental resistance, which improved the 

dependability of SHM applications. The identification of 

damage in cable-stayed bridges through their monitoring 

operations became possible using the hybrid ML 

framework that Pham et al. [42] developed. The authors 

combined particle swarm optimization for finite element 

model updating with categorical gradient boosting 

(CatBoost) for damage detection in their method. Tests of 

a bridge case demonstrated how the detection method 

excelled at complex cable damage identification during 

benchmark evaluation, thus proving better capabilities for 

structural health assessments. The real-time assessment 

of prestressed concrete railway bridges received 

contributions through an ML framework developed by 

Marasco et al. [43]. Analysis of extended monitoring 

records enabled researchers to deploy Extreme Gradient 

Boosting and Multi-Layer Perceptron models that 

generated anomaly detection thresholds to support more 

efficient damage discovery during the initial phase and 

predictive maintenance activities. Researchers 

implemented DL optimization methods for detecting 

widespread bridge degradation in addition to real-time 

monitoring programs. The team of Doroudi [44] developed 

a DL framework that combined signal processing 

techniques like multivariate empirical mode decomposition 

and wavelet transforms to produce better features. Tests 

on Tianjin Yonghe Bridge utilized hyperparameter tuning 

through a meta-heuristic optimization algorithm, which 

applied to LSTM, CNN, and MLP models to achieve strong 

damage identification accuracy. 

In 2025, lightweight bridge structures received ML 

application treatment. Numerous studies, such as Dadoulis 

et al. [45] demonstrated CNN-based technology as a 

method for detecting lightweight bridge damage under 

moving load conditions. The research design utilized 

simulated acceleration response data to train their model 

into developing a system that classified different damage 

conditions. A steel beam laboratory test confirmed how the 

proposed model enhanced vibration-based bridge 

monitoring by improving its reliability. Ghiasi et al. [46] 

developed a steel bridge anomaly detection framework 

through the utilization of Siamese CNNs. Their method 

applied generally to multiple structures by effectively 

detecting section loss caused by corrosion. The Siamese 

CNN framework operated with both finite element and 

experimental data to deliver high accuracy as it provided 

an extendable data-driven SHM solution for large-scale 

bridge network monitoring. 

Transfer learning (TL) stands as a strong addition to SHM 

to create an advanced method that promoted damage 

detection while extending to various conditions. The work 

by Teng et al. [47] integrated TL into vibration-based 

structural damage detection by applying one-dimensional 

CNNs with domain adaptation mechanisms. A CNN initially 

received numerical bridge model data containing singular 

damage conditions to perform training; afterward, it 

underwent improved training through adaptation to multi-

damage situations accompanied by various structural sizes 

and experimental datasets. Such a methodology enhanced 

both identification accuracy while reducing overfitting 

effects and speeding up convergence, which enabled 

vibration-based SHM systems to work with different bridge 

structures. The concept of TL received further 

development by Giglioni et al. [48] for improving 

population-based structural health monitoring (PBSHM) 

capabilities across multi-span girder bridges. Feature 

transformation in their approach allowed an ML model 

trained on one bridge to identify damage patterns in 

different bridges. A laboratory-scale experimental 

benchmark enabled testing of this framework, which 

achieved superior damage detection performance in 

various bridge scenarios under different environmental 

conditions, thus proving PBSHM effective for broad-scale 

infrastructure applications. The research by Xin et al. [49] 

adapted MobileViT, a hybrid Transformer-CNN model, and 
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TL approaches for identifying damage in arch bridges. The 

method converted acceleration response data into cross-

correlation matrices, which enhanced structural 

assessments during condition evaluation procedures. The 

framework's accuracy, as well as its low data requirements 

and sensor reliability, was proved through experimental 

and numerical evaluation. With TL integrated into the 

framework, researchers improved both operational 

reliability and operational speed regarding structural 

anomaly detection in arch bridges compared to pure DL-

based techniques. Research results highlighted how TL 

surged in importance for SHM because it improved 

detection methods along with their adaptive capability 

while enhancing their reliability. By bridging the gap 

between numerical simulations and real-world scenarios, 

TL-driven methods provided more scalable and efficient 

solutions for monitoring diverse bridge structures under 

varying environmental and operational conditions. 

Supervised learning methods make it possible for 

researchers to locate essential damage indicators within 

bridge vibrations. The need for labeled data remains a 

challenge when using these methods since collecting data 

for damaged bridge conditions can be very difficult. 

Unsupervised learning. Unsupervised learning methods 

have become popular in SHM because of data acquisition 

challenges hence providing efficient solutions to detect 

damage and adapt domains in BHM applications. Such 

techniques remove the necessity of labelled data, which 

proves essential for practical field implementations.  

In 2023, Entezami et al. [50] created an unsupervised 

meta-learning system that focused on extended bridge 

monitoring of concrete and steel infrastructure by 

managing large datasets and partial data gaps. The 

method implemented spectral clustering with nearest 

cluster selection and locally robust Mahalanobis-squared 

distance detection to decrease environmental fluctuations 

successfully. This monitoring method delivered increased 

accuracy for spot detection of long-term structural 

damage, producing dependable results even under varying 

conditions. Xu et al. [51] proposed an unsupervised DL 

method for bridge condition assessment that relied on 

probability-based relationships between structural quasi-

static responses. Their algorithm merged variational 

autoencoders with generative adversarial networks to 

accomplish deflection-tension relationship reconstruction 

and translation. The SHM application benefited from this 

method because it used the Wasserstein distance indicator 

to detect cable damage in real-world bridges while 

reducing dependency on synchronized loading and 

improving overall robustness. The study introduced by 

Entezami et al. [52] delivered a fully non-parametric ML 

solution that focused on short-term SHM using restricted 

vibration information. The method incorporated 

hierarchical clustering of features alongside density-based 

damage alarm detection, which successfully reduced the 

impact of environmental fluctuations. The approach 

delivered accurate initial detection results through analysis 

of authentic bridge data while requiring minimal labeled 

training datasets. The research by Lüleci et al. [53] 

introduced CycleWDCGAN-GP to produce synthetic 

vibration response data from limited datasets for SHM. 

Their approach allowed them to predict structural damage 

in advance by reproducing the natural transition between 

different structural states. The proposed method improved 

the efficacy of DL-based SHM by generating valuable 

training data that addressed the restricted availability of 

real damage datasets. The unsupervised learning process 

in vibration-based SHM received a detailed evaluation by 

Eltouny et al. [54], who analyzed diverse ML approaches 

while reviewing benchmark datasets and identifying 

barriers to research translation into operational 

applications. Their findings emphasized the potential of 

novelty detection and clustering approaches while also 

highlighting critical gaps in environmental variability 

modeling and automated decision-making processes. 

In 2024, Ge and Sadhu [55] extended data transformation 

approaches by creating a domain adaptation framework 

that combined physical constraint models and self-

attention architecture into the CycleGAN architecture. 

Their method combined simulated with real structural 

information to enhance both data feature adjustment and 

accuracy prediction of models. This framework built SHM 

model stability levels for more dependable real-world 

implementations. The research community behind 

vibration-based SHM introduced a multi-head self-

attention LSTM autoencoder for structural damage 

diagnosis through the work of Ghazimoghadam and 

Hosseinzadeh [56]. The model used ambient vibration 

signal reconstruction error analysis to find damage, 

determine its spatial position, and measure structural 

health deficiencies. Laboratory testing, together with Z24 

bridge evaluations, showed that this approach performed 

better than standard autoencoders because it detected 

subtle faults in various locations. A frequency-enhanced 

vector-quantized variational autoencoder for efficient 

structural vibration response compression was developed 

by Xue et al. [57]. A combination of dual-branch feature 

extraction techniques with sensor position encoding 

enabled their approach to achieve both high compression 

rates and accurate modal results. The newly developed 

method enhanced the storage efficiency of collected data 

and data transfer reliability. 

The aforementioned research demonstrate how 

unsupervised learning transforms SHM operations by 

solving problems with issues such as scarce data, 

environmental changes, and feature transformation. The 

combination of DL approaches with generation models and 

domain adaptation expertise enables robust and scalable 

data-efficient bridge monitoring solutions. 

2.3.2 Indirect method 

The field of indirect SHM has started gaining increased 

interest because it offers a low-cost solution for bridge 

assessment. It gets enhanced through vehicle-bridge 

interaction fused with ML along with DL approaches to 

establish better drive-by monitoring procedures that 

circumvent direct structural instrument requirements. 

Supervised learning. Supervised learning techniques 

represent the standard approach for vehicle response-

based methods, just like direct methods.  

In 2023, Hajializadeh [58] created a DL-based system to 

detect railway bridge damage using train-borne 

acceleration data. The CNN model used TL to process 
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spectrogram images of vibration signals, which resulted in 

effective damage state classification under different speed 

and rail conditions. The results confirmed the strong 

potential of using indirect SHM for railway monitoring 

through this method. The research of Lan et al. [59] 

developed an optimized AdaBoost-Linear SVM framework 

for performing indirect bridge monitoring through analysis 

of vehicle acceleration data. A modification of SVM 

hyperparameters produced better classification precision 

according to laboratory testing outcomes. The method 

proved that vehicle-based monitoring provided an efficient 

solution for replacing traditional direct SHM systems. Lan 

et al. [60] developed a framework for damage diagnosis 

that used unprocessed vehicle acceleration data instead of 

ML-based features. A new damage index combined with a 

location index enabled the method to effectively measure 

damage extent while precisely identifying affected areas, 

thus improving drive-by monitoring systems. The research 

of Li et al. [61] added value to bridge damage detection 

through their development of an SVM model using Mel-

frequency cepstral coefficients (MFCCs). The conversion of 

vehicle vibration signals into MFCCs allowed the method to 

extract features from both low and high frequencies, which 

boosted efficiency and classification performance. Li et al. 

[62] developed the assumption accuracy method through 

the combination of frequency-domain characteristics with 

principal component analysis and MFCCs. The assumption 

accuracy method proved beneficial because it did not 

require damage labels for data analysis, which made it 

suitable for practical applications. Li et al. [63,64] 

conducted research about smartphone-based footbridge 

monitoring through the analysis of scooter vibrations. The 

researchers developed a two-dimensional CNN model that 

processed time-frequency representations to achieve 

better results than a one-dimensional CNN using 

frequency spectra. Field tests and simulations 

demonstrated the validity of this approach, enhancing 

damage sensitivity while reducing environmental noise 

disturbances and extending indirect SHM capabilities 

beyond traditional vehicle-based methods. 

In 2024, recurrent neural networks improved ML models 

for drive-by monitoring. The authors of [65] developed a 

damage detection method based on Long Short-Term 

Memory networks that utilized vehicle-bridge interaction 

models for contact point response data. The damage index 

based on Euclidean Distance allowed their method to 

detect structural anomalies with high precision. The 

numerical simulations showed that road roughness 

reduced effectiveness, but further improvements were 

required for real-world applications. Researchers 

conducted experimental testing of drive-by monitoring 

systems. The authors Corbally and Malekjafarian [66] 

implemented their data-driven algorithm through 

experiments on laboratory-scale vehicle-bridge interaction 

models. The proposed method established the Operating 

Deflection Shape Ratio as an indicator to detect both 

midspan cracking and seized bearings. The researchers 

Corbally and Malekjafarian [67] created a DL-based 

framework that performed damage type, location, and 

severity classification. A vehicle–bridge interaction model 

provided training data labels to develop a detection 

system that reached high accuracy levels independently of 

pre-established damage scenarios and established itself as 

an efficient alternative to traditional SHM. Indirect SHM 

benefited from improved performance through the 

implementation of DL-based image processing techniques. 

A 2D CNN for indirect bridge damage identification was 

introduced by Chen et al. in [68], which converted vehicle 

acceleration signals into time-frequency images through 

continuous wavelet transform. The method showed 

excellent localization abilities together with effective 

suppression of road surface irregularities. Wang et al. [69] 

created a data-derived method to detect breathing cracks 

in plate-like bridges. The damage indicator of contact point 

displacement variation led to the training of a CatBoost 

model on data from finite element simulations. Numerical 

simulations, together with laboratory experiments, 

validated the framework, which exhibited resistance to 

road roughness along with varying vehicle speeds. 

Unsupervised learning. The development of drive-by 

SHM now uses unsupervised learning methods, domain 

adaptation techniques, and autoencoder-based 

approaches to enhance bridge damage assessment 

capabilities. These methods make it possible to eliminate 

extensive datasets while improving the scalability together 

with the practicality of indirect monitoring across diverse 

structures throughout various operational conditions.  

In 2023, Liu et al. [70] established HierMUD as a 

hierarchical multi-task unsupervised domain adaptation 

framework that transferred knowledge from labeled 

bridges to unlabeled ones. With its use of adversarial 

learning, HierMUD extracted domain-invariant task-

informative features that led to accurate damage detection 

and localization alongside quantification needs without any 

target domain labelling requirements. This diagnostic 

system used several bridge and vehicle platforms, which 

led to substantial improvements in real-world diagnostic 

outcomes. The exploration of real-time damage detection 

in structures became possible through DL-based 

approaches. Li et al. [71] established a bridge monitoring 

system that operated in real time through the 

implementation of deep auto-encoders. The analysis of 

short-time vehicle vibration frequency responses rather 

than extended signals proved effective for reducing noise 

disturbances. The continuous beam laboratory model 

demonstrated 86.2% accuracy when testing the system, 

which indicated its viability for quick SHM implementation. 

Drive-by SHM frameworks benefited from the improved 

effectiveness that unsupervised learning techniques 

provided. The researchers Calderon Hurtado et al. [72] 

created an adversarial autoencoder system for performing 

indirect bridge surveillance. The model generated accurate 

reconstructions of vehicle acceleration signals under 

healthy conditions, so damage detection became possible 

by analyzing deviations from these expected responses. 

Testing through simulations and laboratory experiments 

confirmed the system's resistance to environmental 

fluctuations while achieving better results than standard 

unsupervised methods. 

In 2024, Hurtado et al. [73] created an entirely automated 

drive-by BHM system using computer vision with 

unsupervised techniques. The method examined 

frequency-domain vehicle reactions through a 

combination of empirical Fourier decomposition with 

convolutional autoencoders. Numerical testing and 

experiments validated this method to be robust against 
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road roughness effects as it maintained high performance 

levels for automated bridge condition assessment. A 

specialized drive-by monitoring system targeting railway 

infrastructure was created by de Souza et al. [74]. They 

used Log-Mel spectrograms from train acceleration data to 

establish their sparse autoencoder system. The model 

utilized damage indices based on statistical distribution 

computations, which showed both strong sensitivity for 

detecting initial damage and operational and 

environmental robustness, thus making them ideal for 

high-speed railway conditions. The authors Fernandes et 

al. [75] designed a scour damage detection system for 

railway bridges, which combined deep autoencoders with 

optimally positioned sensors for selected applications. 

Their model used vehicle acceleration data to detect 

stiffness reductions at bridge piers, which was a signature 

sign of scour-related deterioration. Numerical simulations 

verified that the method had excellent precision for 

identifying minimal scour damage while managing 

operational ranges and enhancing proactive maintenance 

of railway bridges. 

3 Discussions and suggestions 

The recent developments in vibration-based BHM through 

artificial intelligence techniques have been the focus of this 

last section.  Applications of AI have enhanced the 

accuracy and efficiency while introducing automation to 

SHM systems while handling three fundamental issues 

related to abnormality detection, data restoration, and 

bridge inspection. The review reveals multiple significant 

trends together with difficulties that have appeared. 

At present, AI-based SHM employs supervised learning 

approaches because supervised learning techniques 

achieve superior accuracy during training with labelled 

datasets. The acquisition of damage-labelled data 

preserves significant challenges, thus driving deep interest 

toward unsupervised and semi-supervised learning 

methods. Unsupervised learning technology like 

autoencoders and clustering algorithms demonstrate their 

usefulness for uncovering anomalies automatically, which 

makes them suitable for practical applications that do not 

use labelled damage information. 

AI-driven SHM faces considerable obstacles from 

environmental factors along with operational conditions 

that can affect its performance. The monitoring system 

produces incorrect outcomes because temperature shifts 

together with humidity and heavy traffic patterns make it 

difficult to detect damage. Domain adaptation techniques 

alongside TL and physics-informed AI modelling enable 

researchers to overcome this issue by separating 

structural variations resulting from damage from those 

caused by environmental factors. 

When performing SHM, practitioners must select between 

direct and indirect monitoring methods as essential 

monitoring elements. Direct monitoring uses sensors 

attached to bridges to deliver precise structural data, but 

it demands substantial effort as well as high financial 

costs. Vehicle response monitoring provides a less 

expensive method for conducting indirect SHM in 

comparison to direct sensor installations. Representing the 

natural vibrations of bridges from additional sources like 

road conditions and vehicles poses a detection difficulty. 

ML techniques support the development of physics-based 

methods to improve indirect monitoring methods while 

making them suitable for practical applications. 

Real-time SHM systems and predictive maintenance 

utilizing AI continue to develop at a rapid pace, which 

allows engineers to develop warning systems for early 

structural deterioration identification. Essential structural 

safety improvements together with operational efficiency 

increase due to the combination of ML with edge 

computing and cloud-based platforms [76,77]. Research 

needs to enhance computing efficiency for the 

implementation of real-time AI-based SHM systems, which 

allows deployment at scale and produces effective 

infrastructure monitoring solutions. 

4 Conclusions 

Using AI techniques for vibration-based BHM has shown 

great potential in bridge engineering. These approaches 

have shown significant detection capabilities and improved 

efficiency and automation degree for bridge condition 

assessment. This review has highlighted key 

methodologies, advancements, and existing challenges in 

current studies. Some concluding remarks can be drawn: 

1) DL models have significantly improved the sensitivity 

of SHM systems to minor bridge damage and shown 

great potential to surpass traditional modal-based 

approaches. 

2) Due to the limited data for damaged cases, the 

transition from supervised to unsupervised learning is 

critical for achieving scalable and generalized damage 

detection models. 

3) Environmental and operational variability remains a 

challenge for practical engineering applications, which 

necessitates the development of robust AI models. 

4) The indirect method offers a cost-effective alternative 

to traditional sensor-based systems, but challenges in 

extracting bridge information from vehicle dynamics 

need further investigations. 

Based on the authors’ best understanding, future research 

in this field needs to focus on AI applications together with 

emerging techniques, e.g., digital twins, edge computing, 

and Internet of Things, to create more adaptive and 

intelligent bridge monitoring frameworks. In addition, as 

this field is highly interdisciplinary, it requires collaboration 

among civil engineers, AI researchers, and policymakers. 

Such cooperation is essential for developing standardized 

AI-driven SHM solutions that enhance the safety of bridges 

worldwide. 

Acknowledgements 

This research is financially sponsored by Aalto University 

(research project funding in ENG 2022).  

References 

[1] Research and innovation in bridge maintenance, 
inspection and monitoring a European perspective 
based on the Transport Research and Innovation 
Monitoring and Information System (TRIMIS), Re-
edition, Publications Office of the European Union, 

| 62

 25097075, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cepa.3377 by A

alto U
niversity, W

iley O
nline L

ibrary on [25/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Luxembourg, 2019. 
[2] Z. He, W. Li, H. Salehi, H. Zhang, H. Zhou, P. Jiao, 

Integrated structural health monitoring in bridge 
engineering, Automation in Construction 136 (2022) 
104168. 
https://doi.org/10.1016/j.autcon.2022.104168. 

[3] X. Tan, A. Abu-Obeidah, Y. Bao, H. Nassif, W. 
Nasreddine, Measurement and visualization of 
strains and cracks in CFRP post-tensioned fiber 
reinforced concrete beams using distributed fiber 
optic sensors, Automation in Construction 124 

(2021) 103604. 
https://doi.org/10.1016/j.autcon.2021.103604. 

[4] X. Tan, S. Mahjoubi, X. Zou, W. Meng, Y. Bao, 
Metaheuristic inverse analysis on interfacial 
mechanics of distributed fiber optic sensors 
undergoing interfacial debonding, Mechanical 
Systems and Signal Processing 200 (2023) 110532. 
https://doi.org/10.1016/j.ymssp.2023.110532. 

[5] C. Maruccio, G. Quaranta, L.D. Lorenzis, G. Monti, 
Energy harvesting from electrospun piezoelectric 
nanofibers for structural health monitoring of a 
cable-stayed bridge, Smart Materials and Structures 

25 (2016) 085040. https://doi.org/10.1088/0964-
1726/25/8/085040. 

[6] J. Yu, X. Meng, B. Yan, B. Xu, Q. Fan, Y. Xie, Global 
Navigation Satellite System‐based positioning 

technology for structural health monitoring: a 
review, Structural Control and Health Monitoring 27 
(2020). https://doi.org/10.1002/stc.2467. 

[7] J.D.S. Vincent, M. Rodrigues, Z. Leong, N.A. Morley, 
Design and Development of Magnetostrictive 
Actuators and Sensors for Structural Health 
Monitoring, Sensors 20 (2020) 711. 
https://doi.org/10.3390/s20030711. 

[8] L. Ge, D. Dan, H. Li, An accurate and robust 
monitoring method of full‐bridge traffic load 

distribution based on YOLO‐v3 machine vision, 

Structural Control and Health Monitoring 27 (2020). 

https://doi.org/10.1002/stc.2636. 
[9] F. Deng, S. Wei, Y. Xu, H. Li, Damage identification 

of long-span bridges based on the correlation of 
monitored global dynamic responses in high 
dimensional space, Engineering Structures 299 
(2024) 117134. 
https://doi.org/10.1016/j.engstruct.2023.117134. 

[10] Y. Zhang, Y. Zhang, J. Yu, F. Zhao, S. Zhu, 
Structural Online Damage Identification and 
Dynamic Reliability Prediction Method Based on 
Unscented Kalman Filter, Sensors 24 (2024) 7582. 
https://doi.org/10.3390/s24237582. 

[11] L. Ai, B. Zhang, P. Ziehl, A transfer learning 
approach for acoustic emission zonal localization on 
steel plate-like structure using numerical simulation 
and unsupervised domain adaptation, Mechanical 
Systems and Signal Processing 192 (2023) 110216. 
https://doi.org/10.1016/j.ymssp.2023.110216. 

[12] X. Wang, N. Banthia, D.-Y. Yoo, Reinforcement bond 
performance in 3D concrete printing: Explainable 
ensemble learning augmented by deep generative 
adversarial networks, Automation in Construction 
158 (2024) 105164. 

https://doi.org/10.1016/j.autcon.2023.105164. 
[13] X. Wang, A. Chen, Y. Liu, Explainable ensemble 

learning model for predicting steel section-concrete 
bond strength, Construction and Building Materials 
356(2022)129239.https://doi.org/10.1016/j.conbui
ldmat.2022.129239. 

[14] V.M. Di Mucci, A. Cardellicchio, S. Ruggieri, A. Nettis, 
V. Renò, G. Uva, Artificial intelligence in structural 
health management of existing bridges, Automation 

in Construction 167 (2024) 105719. 
https://doi.org/10.1016/j.autcon.2024.105719. 

[15] O.S. Sonbul, M. Rashid, Algorithms and Techniques 
for the Structural Health Monitoring of Bridges: 
Systematic Literature Review, Sensors 23 (2023) 
4230. https://doi.org/10.3390/s23094230. 

[16] Y.-J. Cha, R. Ali, J. Lewis, O. Büyükӧztürk, Deep 

learning-based structural health monitoring, 
Automation in Construction 161 (2024) 105328. 
https://doi.org/10.1016/j.autcon.2024.105328. 

[17] Z. Li, Y. Lan, K. Feng, W. Lin, Investigation of time-
varying frequencies of two-axle vehicles and bridges 
during interaction using drive-by methods and 

improved multisynchrosqueezing transform, 
Mechanical Systems and Signal Processing 220 
(2024) 111677–111677. 
https://doi.org/10.1016/j.ymssp.2024.111677. 

[18] K. Feng, M. Casero, A. González, Characterization of 
the road profile and the rotational stiffness of 
supports in a bridge based on axle accelerations of 
a crossing vehicle, Computer-Aided Civil and 
Infrastructure Engineering 38 (2023) 1935–1954. 
https://doi.org/10.1111/mice.12974. 

[19] Z. Li, W. Lin, Y. Zhang, Bridge Frequency Scanning 

Using the Contact-Point Response of an 
Instrumented 3D Vehicle: Theory and Numerical 
Simulation, Structural Control and Health Monitoring 
2023 (2023) 1–23. 
https://doi.org/10.1155/2023/3924349. 

[20] Z. Li, Y. Lan, W. Lin, Indirect damage detection for 
bridges using sensing and temporarily parked 
vehicles, Engineering Structures 291 (2023) 
116459–116459. 
https://doi.org/10.1016/j.engstruct.2023.116459. 

[21] K. Feng, D. Hester, S. Taylor, C. O’Higgins, A. 
Ferguson, Z. Zhu, G. Zou, M. Lydon, J. Early, 

Experimental modal identification of a pedestrian 
bridge through drive-by monitoring integrated with 
shared-mobility vehicles, Developments in the Built 
Environment 20 (2024) 100562. 
https://doi.org/10.1016/j.dibe.2024.100562. 

[22] A. González, K. Feng, M. Casero, Effective 
separation of vehicle, road and bridge information 
from drive-by acceleration data via the power 
spectral density resulting from crossings at various 
speeds, Developments in the Built Environment 14 
(2023) 100162–100162. 
https://doi.org/10.1016/j.dibe.2023.100162. 

[23] X. Ye, P. Wu, A. Liu, X. Zhan, Z. Wang, Y. Zhao, A 
Deep Learning-Based Method for Automatic Abnormal 
Data Detection: Case Study for Bridge Structural 
Health Monitoring, International Journal of Structural 
Stability and Dynamics 23 (2023) 2350131. 
https://doi.org/10.1142/S0219455423501316. 

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. 
Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, 
Going Deeper with Convolutions, (2014). 
https://doi.org/10.48550/ARXIV.1409.4842. 

[25] X. Lei, Y. Xia, A. Wang, X. Jian, H. Zhong, L. Sun, 

Mutual information based anomaly detection of 
monitoring data with attention mechanism and 
residual learning, Mechanical Systems and Signal 
Processing 182 (2023) 109607–109607. 
https://doi.org/10.1016/j.ymssp.2022.109607. 

[26] Q. Pan, Y. Bao, H. Li, Transfer learning-based data 
anomaly detection for structural health monitoring, 
Structural Health Monitoring 22 (2023) 3077–3091. 
https://doi.org/10.1177/14759217221142174. 

[27] J. Kang, L. Wang, W. Zhang, J. Hu, X. Chen, D. 
Wang, Z. Yu, Effective alerting for bridge monitoring 
via a machine learning-based anomaly detection 

|63

 25097075, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cepa.3377 by A

alto U
niversity, W

iley O
nline L

ibrary on [25/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



method, Structural Health Monitoring (2024) 
14759217241265286. 
https://doi.org/10.1177/14759217241265286. 

[28] B. Du, L. Wu, L. Sun, F. Xu, L. Li, Heterogeneous 
structural responses recovery based on multi-modal 
deep learning, Structural Health Monitoring 22 
(2023) 799–813. 
https://doi.org/10.1177/14759217221094499. 

[29] J. Xin, C. Zhou, Y. Jiang, Q. Tang, X. Yang, J. Zhou, 
A signal recovery method for bridge monitoring 
system using TVFEMD and encoder-decoder aided 

LSTM, Measurement 214 (2023) 112797. 
https://doi.org/10.1016/j.measurement.2023.1127
97. 

[30] Y. Lu, L. Tang, C. Chen, L. Zhou, Z. Liu, Y. Liu, Z. 
Jiang, B. Yang, Reconstruction of structural long-
term acceleration response based on BiLSTM 
networks, Engineering Structures 285 (2023) 
116000. 
https://doi.org/10.1016/j.engstruct.2023.116000. 

[31] J. Zhang, M. Huang, N. Wan, Z. Deng, Z. He, J. Luo, 
Missing measurement data recovery methods in 
structural health monitoring: The state, challenges 

and case study, Measurement 231 (2024) 114528. 
https://doi.org/10.1016/j.measurement.2024.1145
28. 

[32] Y. An, Z. Xue, J. Ou, Deep learning-based sparsity-
free compressive sensing method for high accuracy 
structural vibration response reconstruction, 
Mechanical Systems and Signal Processing 211 
(2024) 111168. 
https://doi.org/10.1016/j.ymssp.2024.111168. 

[33] J. Shi, H. Shi, J. Li, Z. Yu, Train-induced vibration 
response reconstruction for bridge damage 

detection with a deep learning methodology, 
Structures 64 (2024) 106496–106496. 
https://doi.org/10.1016/j.istruc.2024.106496. 

[34] B.T. Svendsen, O. Øiseth, G.T. Frøseth, A. 
Rønnquist, A hybrid structural health monitoring 
approach for damage detection in steel bridges 
under simulated environmental conditions using 
numerical and experimental data, Structural Health 
Monitoring 22 (2023) 540–561. 
https://doi.org/10.1177/14759217221098998. 

[35] M.Z. Sarwar, D. Cantero, Vehicle assisted bridge 
damage assessment using probabilistic deep 

learning, Measurement 206 (2023) 112216–
112216.https://doi.org/10.1016/j.measurement.20
22.112216. 

[36] J. Mao, X. Su, H. Wang, J. Li, Automated Bayesian 
operational modal analysis of the long-span bridge 
using machine-learning algorithms, Engineering 
Structures 289 (2023) 116336. 
https://doi.org/10.1016/j.engstruct.2023.116336. 

[37] A. Cardellicchio, S. Ruggieri, A. Nettis, V. Renò, G. 
Uva, Physical interpretation of machine learning-
based recognition of defects for the risk 
management of existing bridge heritage, 

Engineering Failure Analysis 149 (2023) 107237. 
https://doi.org/10.1016/j.engfailanal.2023.107237. 

[38] X.-W. Ye, Z. Sun, J. Lu, Prediction and early warning 
of wind-induced girder and tower vibration in cable-
stayed bridges with machine learning-based 
approach, Engineering Structures 275 (2023) 
115261. 
https://doi.org/10.1016/j.engstruct.2022.115261. 

[39] A. Noori Hoshyar, M. Rashidi, Y. Yu, B. Samali, 
Proposed Machine Learning Techniques for Bridge 
Structural Health Monitoring: A Laboratory Study, 

Remote Sensing 15 (2023) 1984. 
https://doi.org/10.3390/rs15081984. 

[40] D. Xu, X. Xu, M.C. Forde, A. Caballero, Concrete and 
steel bridge Structural Health Monitoring—Insight 
into choices for machine learning applications, 
Construction and Building Materials 402 (2023) 
132596. 
https://doi.org/10.1016/j.conbuildmat.2023.13259
6. 

[41] M.A. Bud, M. Nedelcu, I. Moldovan, E. Figueiredo, 
Hybrid Approach for Supervised Machine Learning 
Algorithms to Identify Damage in Bridges, Journal of 
Bridge Engineering 29 (2024) 04024056. 

https://doi.org/10.1061/JBENF2.BEENG-6537. 
[42] V.-T. Pham, D.-K. Thai, S.-E. Kim, A novel procedure 

for cable damage identification of cable-stayed 
bridge using particle swarm optimization and 
machine learning, Structural Health Monitoring 
(2024) 14759217241246501. 
https://doi.org/10.1177/14759217241246501. 

[43] G. Marasco, F. Oldani, B. Chiaia, G. Ventura, F. 
Dominici, C. Rossi, F. Iacobini, A. Vecchi, Machine 
learning approach to the safety assessment of a 
prestressed concrete railway bridge, Structure and 
Infrastructure Engineering 20 (2024) 566–580. 

https://doi.org/10.1080/15732479.2022.2119581. 
[44] R. Doroudi, S.H.H. Lavassani, M. Shahrouzi, Optimal 

tuning of three deep learning methods with signal 
processing and anomaly detection for multi-class 
damage detection of a large-scale bridge, Structural 
Health Monitoring 23 (2024) 3227–3252. 
https://doi.org/10.1177/14759217231216694. 

[45] G. Dadoulis, G.D. Manolis, K. Katakalos, K. Dragos, 
K. Smarsly, Damage detection in lightweight bridges 
with traveling masses using machine learning, 
Engineering Structures 322 (2025) 119216. 

https://doi.org/10.1016/j.engstruct.2024.119216. 
[46] A. Ghiasi, Z. Zhang, Z. Zeng, C.T. Ng, A.H. Sheikh, 

J.Q. Shi, Generalization of anomaly detection in 
bridge structures using a vibration‐based Siamese 

convolutional neural network, Computer-Aided Civil 
and Infrastructure Engineering (2025) mice.13411. 
https://doi.org/10.1111/mice.13411. 

[47] S. Teng, G. Chen, Z. Yan, L. Cheng, D. Bassir, 
Vibration-based structural damage detection using 
1-D convolutional neural network and transfer 
learning, Structural Health Monitoring 22 (2023) 
2888–2909. 
https://doi.org/10.1177/14759217221137931. 

[48] V. Giglioni, J. Poole, R. Mills, I. Venanzi, F. Ubertini, 

K. Worden, Transfer learning in bridge monitoring: 
Laboratory study on domain adaptation for 
population-based SHM of multispan continuous 
girder bridges, Mechanical Systems and Signal 
Processing 224 (2025) 112151. 
https://doi.org/10.1016/j.ymssp.2024.112151. 

[49] J. Xin, L. Jiang, Q. Tang, Y. Jiang, H. Zhang, S.X. 
Yang, Damage identification method of arch bridges 
using MobileViT and transfer learning, Journal of 
Civil Structural Health Monitoring (2025). 
https://doi.org/10.1007/s13349-024-00905-7. 

[50] A. Entezami, H. Sarmadi, B. Behkamal, Long-term 
health monitoring of concrete and steel bridges 
under large and missing data by unsupervised meta 
learning, Engineering Structures 279 (2023) 
115616. 
https://doi.org/10.1016/j.engstruct.2023.115616. 

[51] Y. Xu, Y. Tian, H. Li, Unsupervised deep learning 
method for bridge condition assessment based on 
intra-and inter-class probabilistic correlations of 
quasi-static responses, Structural Health Monitoring 
22 (2023) 600–620. 
https://doi.org/10.1177/14759217221103016. 

| 64

 25097075, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cepa.3377 by A

alto U
niversity, W

iley O
nline L

ibrary on [25/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



[52] A. Entezami, H. Sarmadi, B. Behkamal, Short-term 
damage alarming with limited vibration data in 
bridge structures: A fully non-parametric machine 
learning technique, Measurement 235 (2024) 
114935.https://doi.org/10.1016/j.measurement.20
24.114935. 

[53] F. Luleci, F. Necati Catbas, O. Avci, CycleGAN for 
undamaged-to-damaged domain translation for 
structural health monitoring and damage detection, 
Mechanical Systems and Signal Processing 197 
(2023) 110370. 

https://doi.org/10.1016/j.ymssp.2023.110370. 
[54] K. Eltouny, M. Gomaa, X. Liang, Unsupervised 

Learning Methods for Data-Driven Vibration-Based 
Structural Health Monitoring: A Review, Sensors 23 
(2023) 3290. https://doi.org/10.3390/s23063290. 

[55] L. Ge, A. Sadhu, Domain adaptation for structural 
health monitoring via physics-informed and self-
attention-enhanced generative adversarial learning, 
Mechanical Systems and Signal Processing 211 
(2024) 111236. 
https://doi.org/10.1016/j.ymssp.2024.111236. 

[56] S. Ghazimoghadam, S.A.A. Hosseinzadeh, A novel 

unsupervised deep learning approach for vibration-
based damage diagnosis using a multi-head self-
attention LSTM autoencoder, Measurement 229 
(2024)114410.https://doi.org/10.1016/j.measurem
ent.2024.114410. 

[57] Z. Xue, Y. An, J. Ou, Frequency enhanced vector 
quantized variational autoencoder for structural 
vibration response compression, Mechanical 
Systems and Signal Processing 224 (2025) 112136. 
https://doi.org/10.1016/j.ymssp.2024.112136. 

[58] D. Hajializadeh, Deep learning-based indirect bridge 

damage identification system, Structural Health 
Monitoring 22 (2023) 897–912. 
https://doi.org/10.1177/14759217221087147. 

[59] Y. Lan, Y. Zhang, W. Lin, Diagnosis algorithms for 
indirect bridge health monitoring via an optimized 
AdaBoost-linear SVM, Engineering Structures 275 
(2023) 115239–115239. 
https://doi.org/10.1016/j.engstruct.2022.115239. 

[60] Y. Lan, Z. Li, W. Lin, Physics-guided diagnosis 
framework for bridge health monitoring using raw 
vehicle accelerations, Mechanical Systems and 
Signal Processing 206 (2024) 110899–110899. 

https://doi.org/10.1016/j.ymssp.2023.110899. 
[61] Z. Li, W. Lin, Y. Zhang, Drive-by bridge damage 

detection using Mel-frequency cepstral coefficients 
and support vector machine, Structural Health 
Monitoring 22 (2023) 3302–3319. 
https://doi.org/10.1177/14759217221150932. 

[62] Z. Li, Y. Lan, W. Lin, Investigation of Frequency-
Domain Dimension Reduction for A2M-Based Bridge 
Damage Detection Using Accelerations of Moving 
Vehicles, Materials 16 (2023) 1872. 
https://doi.org/10.3390/ma16051872. 

[63] Z. Li, Y. Lan, W. Lin, Footbridge damage detection 

using smartphone-recorded responses of 
micromobility and convolutional neural networks, 
Automation in Construction 166 (2024) 105587–
105587. 
https://doi.org/10.1016/j.autcon.2024.105587. 

[64] Z. Li, Y. Lan, W. Lin, Indirect Frequency 
Identification of Footbridges with Pedestrians Using 
the Contact-Point Response of Shared Scooters, 
Journal of Bridge Engineering 29 (2024) 4024036–
4024036. https://doi.org/10.1061/JBENF2.BEENG-
6344. 

[65] X. Yin, Y. Yang, Z. Huang, W. Yan, Bridge Damage 
Identification Based on LSTM Network and Contact 

Point Response, International Journal of Structural 
Stability and Dynamics (2024) 2450268–2450268. 
https://doi.org/10.1142/S0219455424502687. 

[66] R. Corbally, A. Malekjafarian, Experimental 
verification of a data-driven algorithm for drive-by 
bridge condition monitoring, Structure and 
Infrastructure Engineering 20 (2024) 1174–1196. 
https://doi.org/10.1080/15732479.2024.2311902. 

[67] R. Corbally, A. Malekjafarian, A deep‐learning 

framework for classifying the type, location, and 
severity of bridge damage using drive‐by 

measurements, Computer-Aided Civil and 
Infrastructure Engineering 39 (2024) 852–871. 
https://doi.org/10.1111/mice.13104. 

[68] D. Chen, Y. Zhang, R. Wan, Z. Li, S. Xu, C. Yang, 
Indirect identification of bridge damage based on 
coupled vehicle–bridge vibration and 2D-CNN, Meas. 
Sci. Technol. 35 (2024) 055019. 
https://doi.org/10.1088/1361-6501/ad2ad5. 

[69] C. Wang, K. Gao, Z. Yang, J. Liu, G. Wu, 
Multidamage Detection of Breathing Cracks in Plate‐
Like Bridges: Experimental and Numerical Study, 
Structural Control and Health Monitoring 2024 
(2024) 8840611–8840611. 
https://doi.org/10.1155/2024/8840611. 

[70] J. Liu, S. Xu, M. Bergés, H.Y. Noh, HierMUD: 
Hierarchical multi-task unsupervised domain 

adaptation between bridges for drive-by damage 
diagnosis, Structural Health Monitoring 22 (2023) 
1941–1968. 
https://doi.org/10.1177/14759217221081159. 

[71] Z. Li, W. Lin, Y. Zhang, Real-time drive-by bridge 
damage detection using deep auto-encoder, 
Structures 47 (2023) 1167–1181. 
https://doi.org/10.1016/j.istruc.2022.11.094. 

[72] A. Calderon Hurtado, K. Kaur, M. Makki Alamdari, E. 
Atroshchenko, K.C. Chang, C.W. Kim, Unsupervised 
learning-based framework for indirect structural 
health monitoring using adversarial autoencoder, 

Journal of Sound and Vibration 550 (2023) 117598–
117598. 
https://doi.org/10.1016/j.jsv.2023.117598. 

[73] A.C. Hurtado, M.M. Alamdari, E. Atroshchenko, K.C. 
Chang, C.W. Kim, A data-driven methodology for 
bridge indirect health monitoring using unsupervised 
computer vision, Mechanical Systems and Signal 
Processing 210 (2024) 111109. 
https://doi.org/10.1016/j.ymssp.2024.111109. 

[74] E.F. de Souza, C. Bragança, D. Ribeiro, T.N. 
Bittencourt, H. Carvalho, Drive-by damage detection 
methodology for high-speed railway bridges using 

sparse autoencoders, Railway Engineering Science 
(2024) 1–28. https://doi.org/10.1007/s40534-024-
00347-3. 

[75] T. Fernandes, R. Lopez, D. Ribeiro, Drive-by scour 
damage detection in railway bridges using deep 
autoencoder and different sensor placement 
strategies, Journal of Civil Structural Health 
Monitoring 14 (2024) 1895–1916. 
https://doi.org/10.1007/s13349-024-00821-w. 

[76] S. Cui, T. Hoang, K. Mechitov, Y. Fu, B.F. Spencer, 
Adaptive edge intelligence for rapid structural 

condition assessment using a wireless smart sensor 
network, Engineering Structures 326 (2025) 119520. 
https://doi.org/10.1016/j.engstruct.2024.119520. 

[77] F. Luleci, J. Chi, C. Cruz-Neira, D. Reiners, F.N. 
Catbas, Fusing infrastructure health monitoring data 
in point cloud, Automation in Construction 165 
(2024) 105546. 
https://doi.org/10.1016/j.autcon.2024.105546.

|65

 25097075, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cepa.3377 by A

alto U
niversity, W

iley O
nline L

ibrary on [25/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


