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Abstract

Due to the deterioration and aging of bridge structures over the past decades,
structural health monitoring (SHM) systems have garnered significant attention
from researchers worldwide. SHM systems encompass multiple modules, including
sensing, data collection, transmission, management, damage detection, and safety
assessment. As a highly interdisciplinary field, SHM integrates various technologies
such as sensor sensing, data acquisition, signal processing, and optimization. One
of the promising approaches in bridge health monitoring (BHM) is vibration-based
monitoring, which provides critical information for bridge condition assessment and
maintenance. In recent years, advancements in computer hardware and Artificial
Intelligence (AI) algorithms have significantly enhanced the capability of vibration-
based BHM systems. AI, with its advanced analytical power and high sensitivity to
anomalies, has been widely adopted in these applications, enabling more efficient
and accurate damage detection. This paper presents a state-of-the-art review of
vibration-based BHM using various AI techniques over the past two years. It
explores how Al can facilitate data-driven BHM systems for bridges and discusses
key aspects of the BHM process, including existing methodologies and current
challenges. Additionally, the paper highlights potential research directions to guide

future studies, offering insights and opportunities for researchers in the field.
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1 Introduction

Bridge structures serve as fundamental elements in
worldwide transportation systems. A considerable number
of bridges built in Europe last century have surpassed 50
years of service life [1]. The process of aging and
deterioration has emerged as a serious problem, which
presents both operational threats and structural
weaknesses. For example, the collapse of the Morandi
bridge in 2018 was a typical case, which underlined the
importance of continuous maintenance. Bridges now face
performance challenges due to escalating traffic and social
changes that require updated standards. Regular health
checks are essential for aging structures, as elevated loads
can exceed their strength capacity.

Visual inspection, traditionally used to evaluate bridge
conditions, has established itself as a main method for
detecting surface failures on bridges. The established
inspection technique encounters multiple major limitations
because it requires engineering expertise, long periods of
work, and extensive manual effort. The rising numbers of
bridges being constructed faster and larger has made
visual inspection inadequate for contemporary bridge

monitoring needs. Damage assessment reliability suffers
from subjective inspector judgments through this
examination method, which leads to possible errors and
inconsistent results.

The start of the 21st century has witnessed the
development of structural health monitoring (SHM)
systems for continuous bridge condition assessments [2].
The primary focus of SHM systems combines data
acquisition with processing, followed by damage alert
systems and prognostic estimates for remaining
operational periods. Damage detection stands out as a
crucial task in SHM systems because it allows engineers to
adopt proper maintenance and repair approaches. The
implementation of SHM systems includes placing different
sensors across bridges to measure their health status. The
detection equipment consists of fiber optic sensors [3,4],
piezoelectric sensors [5], global navigation satellite
system sensors [6], magnetostrictive sensors [7], and
other forms of sensors. These devices detect various
structural data points before further analysis proceeds.
The monitoring algorithms benefit from improved
robustness because of data collection on external
operational factors, which include temperature and
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humidity along with traffic conditions [8]. The vibration-
based SHM methods represent promising techniques
because they offer effective non-destructive assessments
for bridge conditions.

The traditional implementation of bridge monitoring
through vibration methods mostly depends on modal
parameters used to evaluate structural health by
analyzing natural frequencies, mode shapes, and damping
ratios. When operating under real conditions, these modal
parameters demonstrate a limited ability to detect small
mechanical failures or corrosion at early stages. Engineers
typically encounter this damage type during practical use,
but its effect on dynamic characteristics remains difficult
to detect due to hardly noticeable changes [9]. No
alternative dynamic fingerprinting methods proposed over
the last few decades have managed to overcome
operational conditions and environmental factors, which
continue creating obstacles for effective damage
identification in real-world applications [10].

Artificial Intelligence (AI) techniques have experienced
substantial development since software and hardware
innovations have driven their progress across the previous
few decades. The wide range of implementation areas for
machine learning (ML) includes other domains as well as
SHM [11-13]. The feature-learning capability of deep
learning (DL) makes it a leading method for automatic
bridge health condition assessment [14]. The high
sensitivity to anomalies characteristic of DL network
systems enables effective detection of small structural
damage. The implementation of Al techniques for bridge
health monitoring (BHM) has grown significantly over
recent years to solve multiple problems within the domain.
Research papers have investigated various methods of
SHM that utilize Al techniques. The application of bridge
monitoring through ML algorithms has been thoroughly
summarized by Sonbul and Rashid [15], which included
decision trees, random forests, support vector machines,
k-nearest neighbors, as well as diverse neural network
architecture implementations. Cha et al. [16] underwent
through a detailed examination of DL-based SHM systems
by explaining fundamental DL principles and mentioning
recent practical applications. However, the existing
reviews were published before early 2023. Multiple
advanced ML and DL approaches have appeared during
the last two years. For example, when two keywords
“machine learning” and “bridge health monitoring” are
utilized in Scopus database, 79 articles and 59 conference
papers can be found from 2023 to 2025. Given the fast-
growing field, a new extensive literature review is needed.

The current paper conducts an extensive review of
vibration-based BHM that employs Al techniques. Section
2 demonstrates how AI techniques are implemented in
BHM applications. Section 3 discusses existing approaches
to BHM, including their weaknesses and potential
directions for upcoming investigations. Finally, Section 4
provides concluding remarks.

2 Applications of AI in BHM

This section explores three key areas in Al-driven BHM:
data anomaly detection, data recovery, and bridge
damage detection. Among these, damage detection can be

categorized into direct and indirect methods. The direct
method involves installing sensors directly on the bridge
to collect structural responses. This approach provides
detailed and accurate data on bridge behavior, making it
highly informative for health assessment. However, its
implementation is often costly due to the need for multiple
sensors to measure various system responses [17]. Also,
a large amount of data will be collected and need to be
addressed [18]. Conversely, the indirect method utilizes
vehicle response data, where only a few sensors, typically
installed on a moving vehicle, are required [19-21]. This
technique is more cost-effective and convenient, as it
eliminates the need for extensive sensor networks on the
bridge itself. Nevertheless, extracting bridge-specific
information from vehicle data presents challenges due to
interference from vehicle dynamics and road roughness
effects, which can obscure structural signals [22]. This
section provides an in-depth discussion of these
applications, highlighting recent advancements in AI
techniques for each category. The outline of this section is
shown in Figure 1.

Data anomaly
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Data recovery
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Figure 1 Outline of AI applications in BHM.

Bridge damage
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2.1 Data anomaly detection

BHM monitors bridge health from start to finish of its total
service period. Extreme weather or other conditions can
damage sensors, which produce either poor-quality data
or data containing useless information. Duration-based
quality assessment of data must take place continuously
so that users can detect deviations before these deviations
get included within the analysis.

In 2023, Ye et al. [23] created a DL-based anomaly
detection technique for SHM systems with environmental
sensitivity. The method used wavelet scalograms to
generate RGB images from time-series data while
classification occurred through the application of a
convolutional neural network (CNN) architecture based on
GooglLeNet [24]. The identified method performed better
than traditional approaches in detecting bridge anomalies
on cable-stayed structures while dealing with restricted
data availability. The assessment process experienced an
increase in reliability due to reduced false alarms together
with better structural evaluations. Lei et al. [25] developed
a residual attention network that detected anomalies in
SHM data. Mutual information-based preprocessing
enabled the method to achieve good classification
accuracy results. The proposed detection method
exceeded established models by demonstrating
exceptional capabilities in anomaly detection across all
cases. Pan et al. [26] introduced a transfer learning
approach for identifying anomalies in SHM. The network
used data from one bridge which it had pre-trained on to
process limited data from another bridge, enabling better
accuracy results. The experimental validation on two
bridges proved that this method provided better
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classification results using fewer training sets to show its
potential for complex BHM analyses. Research in SHM
directed its focus on developing real-time anomaly
detection systems. In 2024, Kang et al. [27] developed an
ML-based alert system for continuous bridge monitoring
through their process of transforming one-dimensional
time-series sensor data into two-dimensional tensors. The
model acted as an encoder to boost structural behavior
analysis; thus, it surpassed conventional threshold-based
monitoring methods when detecting sensor deviations and
structural anomalies.

Data anomaly detection helps engineers identify sensor-
related issues early, allowing them to take timely
corrective measures and ensure data quality for
subsequent analysis.

2.2 Data recovery

Data loss occurs due to sensor malfunctions along with
transmission errors, while the analysis suffers as well as
the extraction of meaningful insights becomes limited.
Different approaches have been investigated for missing
data recovery through accessible available data sources.
Research workers add data recovery results to current
data collections to support a better evaluation of the
bridge health condition status.

In 2023, the DL-based approach for missing structural
response data recovery in SHM was introduced by Du et
al. [28]. A multi-modal autoencoder formed the core of
their method because it managed to detect temporal
patterns alongside spatial structures, along with
heterogeneous data correlations between sensor data. The
bridge dataset demonstrated higher accuracy than
standard imputation methods because it excelled at
handling extensive data gaps, which positively affected the
performance of SHM systems. Xin et al. [29] created a
signal restoration system for BHM based on time-varying
filtering-based empirical mode decomposition (TVF-EMD)
associated with an encoder-decoder long short-term
memory (ED-LSTM) model. The signals delivered by TVF-
EMD decomposition led to intrinsic mode functions that
were forecasted with ED-LSTM. Their solution, evaluated
with genuine bridge measurements, performed better
than standard approaches, thus creating more dependable
and precise data recovery results. Lu et al. [30] presented
an acceleration data restoration framework built with
BiLSTM for SHM applications. The research method
effectively detected spatial-temporal patterns, which led
to better performance compared to traditional ML
approaches. The assessment of the Z-24 bridge, coupled
with the long-span bridge, demonstrated a high accuracy
level, which confirmed the methodology's capability to
enhance structural assessment and damage detection
processes in SHM systems.

In 2024, Zhang et al. reviewed SHM data recovery
methods [31]. The authors structured their analysis by
dividing SHM data recovery methods into finite-element
and sparse representation and statistical inference in
addition to ML-based approaches while showing what
made each method strong or weak. The research
documented both current dilemmas and anticipated
developments within SHM data recovery procedures. An et

al. [32] developed a compressive sensing method for
structural vibration response reconstruction by using DL
principles. A dual-branch neural network from their
approach processed frequency domain real and imaginary
components to provide better reconstruction results than
traditional methods that used sparsity assumptions. The
laboratory experiment with a grandstand structure proved
that this method delivered excellent results for efficient
SHM data collection. Shi et al. [33] developed a
reconstruction algorithm for bridge vibration responses
from railway trains to boost damage evaluation in heavy-
haul railway bridges. The proposed framework used an
enhanced deep densely connected neural network for data
reconstruction with an alternate down-sampling residual
network for damage identification. The system underwent
testing using genuine bridge data to prove its ability to
improve anomaly detection accuracy.

Engineers can potentially achieve full bridge behavior
understanding through continuous analysis which
becomes possible after recovering the entire dataset. This
data recovery procedure enables detection of the
downstream work, such as damage detection.

2.3 Bridge damage detection

In BHM, a key task is detecting potential bridge damage,
which helps engineers develop maintenance strategies and
extend the bridge’s service life. Depending on the sensor
installation positions, damage detection methods are
categorized into two types: direct and indirect. Each
method is further classified into two approaches:
supervised learning and unsupervised learning.

2.3.1 Direct method

Supervised learning. Over the past two vyears,
researchers have been exploring supervised learning
techniques. This approach requires labelled data to train
the model, enabling it to identify features in unseen data.

In 2023, Svendsen et al. [34] presented a hybrid SHM
framework connecting experimental data to numerical
modeling for steel bridge damage identification. The
authors created synthetic data through finite element
model calibration under different conditions, which allowed
them to develop a ML model for detecting structural
anomalies across environmental change. The damage
identification technique showed improved outcomes
through this method, compared to the approach without
hybrid SHM processes. Sarwar and Cantero [35] built a
probabilistic deep neural network system that used
vehicle-based data for bridge damage evaluation. The
method integrated observation data from bridges and
vehicles and used probabilistic DL to measure prediction
uncertainty. Various numerical analyses under diverse
operating and environmental environments showed how
this detection system achieved precise results by reducing
both measurement noise and temperature fluctuations
along with random traffic disturbances. Modal analysis of
bridge structures implemented ML algorithms as part of its
operational framework. Mao et al. [36] developed a
computerized operational modal analysis system, which
specialized in analyzing long-span bridges. A combination
of convolutional autoencoder technology refined modal
frequency identification, while the self-organizing map
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(Kohonen network) performed mode classification within
this approach. Real bridge data analysis, along with
simulations, demonstrated that this system operated
proficiently for structural parameter observation while
decreasing human involvement in the process. The topic
of explainable ML models became important within the
field of SHM. Cardellicchio et al. [37] established an Al
framework that automatically detected defects in
reinforced concrete bridges using methods with
explainable AI features. A set of CNNs trained on genuine
defect photos achieved model interpretation through Class
Activation Maps. Tests of historical bridges demonstrated
that this approach strengthened damage evaluation and
maintained degraded facilities throughout their lifespan.
Prediction models were used for detecting changes in the
dynamic characteristics of bridge behavior. The research
team of Ye et al. [38] designed an ML-based system that
detected wind-induced vibrations in cable-stayed bridges
at an early stage. The authors established a predictive
system for girder and tower vibrations through the use of
random forest modeling on real bridge data acquired from
typhoon conditions. Structural safety increased through
predictive forecasting because this technology enabled
precautionary decision-making when wind conditions
deteriorated. Noori Hoshyar et al. [39] examined ways to
enhance the classification methods in SHM through their
study. The authors created four support vector machine
(SVM)-based methods to enhance classification results by
implementing integrated solutions for data
misclassification and combined kernel approaches. New
laboratory-established models demonstrated superior
results against standard SVM in crack identification tasks,
thus providing better automated bridge infrastructure
damage assessment methods. Xu et al. [40] delivered a
comprehensive overview of ML applications to concrete
and steel bridge damage detection and assessment
through their review of numerous ML techniques. The
authors analyzed current methods by categorization and
described preprocessing difficulties before assessing
method performance. Standardized image-based damage
detection approaches, together with transformer models
and physics-informed approaches, provided opportunities
to enhance SHM reliability according to the review.

In 2024, the field of damage detection also employed
hybrid ML approaches using minimal actual data. The
supervised learning system developed by Bud et al. [41]
unified real bridge monitoring information with simulated
finite element model outputs. This methodology assisted
classifiers in carrying out damage detection together with
localization and classification functions even when real
damage data was scarce. The framework, assessed using
Z-24 Bridge benchmark data, demonstrated
environmental resistance, which improved the
dependability of SHM applications. The identification of
damage in cable-stayed bridges through their monitoring
operations became possible using the hybrid ML
framework that Pham et al. [42] developed. The authors
combined particle swarm optimization for finite element
model updating with categorical gradient boosting
(CatBoost) for damage detection in their method. Tests of
a bridge case demonstrated how the detection method
excelled at complex cable damage identification during
benchmark evaluation, thus proving better capabilities for
structural health assessments. The real-time assessment

of prestressed concrete railway bridges received
contributions through an ML framework developed by
Marasco et al. [43]. Analysis of extended monitoring
records enabled researchers to deploy Extreme Gradient
Boosting and Multi-Layer Perceptron models that
generated anomaly detection thresholds to support more
efficient damage discovery during the initial phase and
predictive maintenance activities. Researchers
implemented DL optimization methods for detecting
widespread bridge degradation in addition to real-time
monitoring programs. The team of Doroudi [44] developed
a DL framework that combined signal processing
techniques like multivariate empirical mode decomposition
and wavelet transforms to produce better features. Tests
on Tianjin Yonghe Bridge utilized hyperparameter tuning
through a meta-heuristic optimization algorithm, which
applied to LSTM, CNN, and MLP models to achieve strong
damage identification accuracy.

In 2025, lightweight bridge structures received ML
application treatment. Numerous studies, such as Dadoulis
et al. [45] demonstrated CNN-based technology as a
method for detecting lightweight bridge damage under
moving load conditions. The research design utilized
simulated acceleration response data to train their model
into developing a system that classified different damage
conditions. A steel beam laboratory test confirmed how the
proposed model enhanced Vvibration-based bridge
monitoring by improving its reliability. Ghiasi et al. [46]
developed a steel bridge anomaly detection framework
through the utilization of Siamese CNNs. Their method
applied generally to multiple structures by effectively
detecting section loss caused by corrosion. The Siamese
CNN framework operated with both finite element and
experimental data to deliver high accuracy as it provided
an extendable data-driven SHM solution for large-scale
bridge network monitoring.

Transfer learning (TL) stands as a strong addition to SHM
to create an advanced method that promoted damage
detection while extending to various conditions. The work
by Teng et al. [47] integrated TL into vibration-based
structural damage detection by applying one-dimensional
CNNs with domain adaptation mechanisms. A CNN initially
received numerical bridge model data containing singular
damage conditions to perform training; afterward, it
underwent improved training through adaptation to multi-
damage situations accompanied by various structural sizes
and experimental datasets. Such a methodology enhanced
both identification accuracy while reducing overfitting
effects and speeding up convergence, which enabled
vibration-based SHM systems to work with different bridge
structures. The concept of TL received further
development by Giglioni et al. [48] for improving
population-based structural health monitoring (PBSHM)
capabilities across multi-span girder bridges. Feature
transformation in their approach allowed an ML model
trained on one bridge to identify damage patterns in
different bridges. A laboratory-scale experimental
benchmark enabled testing of this framework, which
achieved superior damage detection performance in
various bridge scenarios under different environmental
conditions, thus proving PBSHM effective for broad-scale
infrastructure applications. The research by Xin et al. [49]
adapted MobileViT, a hybrid Transformer-CNN model, and
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TL approaches for identifying damage in arch bridges. The
method converted acceleration response data into cross-
correlation  matrices, which enhanced structural
assessments during condition evaluation procedures. The
framework's accuracy, as well as its low data requirements
and sensor reliability, was proved through experimental
and numerical evaluation. With TL integrated into the
framework, researchers improved both operational
reliability and operational speed regarding structural
anomaly detection in arch bridges compared to pure DL-
based techniques. Research results highlighted how TL
surged in importance for SHM because it improved
detection methods along with their adaptive capability
while enhancing their reliability. By bridging the gap
between numerical simulations and real-world scenarios,
TL-driven methods provided more scalable and efficient
solutions for monitoring diverse bridge structures under
varying environmental and operational conditions.

Supervised learning methods make it possible for
researchers to locate essential damage indicators within
bridge vibrations. The need for labeled data remains a
challenge when using these methods since collecting data
for damaged bridge conditions can be very difficult.

Unsupervised learning. Unsupervised learning methods
have become popular in SHM because of data acquisition
challenges hence providing efficient solutions to detect
damage and adapt domains in BHM applications. Such
techniques remove the necessity of labelled data, which
proves essential for practical field implementations.

In 2023, Entezami et al. [50] created an unsupervised
meta-learning system that focused on extended bridge
monitoring of concrete and steel infrastructure by
managing large datasets and partial data gaps. The
method implemented spectral clustering with nearest
cluster selection and locally robust Mahalanobis-squared
distance detection to decrease environmental fluctuations
successfully. This monitoring method delivered increased
accuracy for spot detection of long-term structural
damage, producing dependable results even under varying
conditions. Xu et al. [51] proposed an unsupervised DL
method for bridge condition assessment that relied on
probability-based relationships between structural quasi-
static responses. Their algorithm merged variational
autoencoders with generative adversarial networks to
accomplish deflection-tension relationship reconstruction
and translation. The SHM application benefited from this
method because it used the Wasserstein distance indicator
to detect cable damage in real-world bridges while
reducing dependency on synchronized loading and
improving overall robustness. The study introduced by
Entezami et al. [52] delivered a fully non-parametric ML
solution that focused on short-term SHM using restricted
vibration information. The method incorporated
hierarchical clustering of features alongside density-based
damage alarm detection, which successfully reduced the
impact of environmental fluctuations. The approach
delivered accurate initial detection results through analysis
of authentic bridge data while requiring minimal labeled
training datasets. The research by Lileci et al. [53]
introduced CycleWDCGAN-GP to produce synthetic
vibration response data from limited datasets for SHM.
Their approach allowed them to predict structural damage

in advance by reproducing the natural transition between
different structural states. The proposed method improved
the efficacy of DL-based SHM by generating valuable
training data that addressed the restricted availability of
real damage datasets. The unsupervised learning process
in vibration-based SHM received a detailed evaluation by
Eltouny et al. [54], who analyzed diverse ML approaches
while reviewing benchmark datasets and identifying
barriers to research translation into operational
applications. Their findings emphasized the potential of
novelty detection and clustering approaches while also
highlighting critical gaps in environmental variability
modeling and automated decision-making processes.

In 2024, Ge and Sadhu [55] extended data transformation
approaches by creating a domain adaptation framework
that combined physical constraint models and self-
attention architecture into the CycleGAN architecture.
Their method combined simulated with real structural
information to enhance both data feature adjustment and
accuracy prediction of models. This framework built SHM
model stability levels for more dependable real-world
implementations. The research community behind
vibration-based SHM introduced a multi-head self-
attention LSTM autoencoder for structural damage
diagnosis through the work of Ghazimoghadam and
Hosseinzadeh [56]. The model used ambient vibration
signal reconstruction error analysis to find damage,
determine its spatial position, and measure structural
health deficiencies. Laboratory testing, together with Z24
bridge evaluations, showed that this approach performed
better than standard autoencoders because it detected
subtle faults in various locations. A frequency-enhanced
vector-quantized variational autoencoder for efficient
structural vibration response compression was developed
by Xue et al. [57]. A combination of dual-branch feature
extraction techniques with sensor position encoding
enabled their approach to achieve both high compression
rates and accurate modal results. The newly developed
method enhanced the storage efficiency of collected data
and data transfer reliability.

The aforementioned research demonstrate how
unsupervised learning transforms SHM operations by
solving problems with issues such as scarce data,
environmental changes, and feature transformation. The
combination of DL approaches with generation models and
domain adaptation expertise enables robust and scalable
data-efficient bridge monitoring solutions.

2.3.2

The field of indirect SHM has started gaining increased
interest because it offers a low-cost solution for bridge
assessment. It gets enhanced through vehicle-bridge
interaction fused with ML along with DL approaches to
establish better drive-by monitoring procedures that
circumvent direct structural instrument requirements.

Indirect method

Supervised learning. Supervised learning techniques
represent the standard approach for vehicle response-
based methods, just like direct methods.

In 2023, Hajializadeh [58] created a DL-based system to
detect railway bridge damage using train-borne
acceleration data. The CNN model used TL to process
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spectrogram images of vibration signals, which resulted in
effective damage state classification under different speed
and rail conditions. The results confirmed the strong
potential of using indirect SHM for railway monitoring
through this method. The research of Lan et al. [59]
developed an optimized AdaBoost-Linear SVM framework
for performing indirect bridge monitoring through analysis
of vehicle acceleration data. A modification of SVM
hyperparameters produced better classification precision
according to laboratory testing outcomes. The method
proved that vehicle-based monitoring provided an efficient
solution for replacing traditional direct SHM systems. Lan
et al. [60] developed a framework for damage diagnosis
that used unprocessed vehicle acceleration data instead of
ML-based features. A new damage index combined with a
location index enabled the method to effectively measure
damage extent while precisely identifying affected areas,
thus improving drive-by monitoring systems. The research
of Li et al. [61] added value to bridge damage detection
through their development of an SVM model using Mel-
frequency cepstral coefficients (MFCCs). The conversion of
vehicle vibration signals into MFCCs allowed the method to
extract features from both low and high frequencies, which
boosted efficiency and classification performance. Li et al.
[62] developed the assumption accuracy method through
the combination of frequency-domain characteristics with
principal component analysis and MFCCs. The assumption
accuracy method proved beneficial because it did not
require damage labels for data analysis, which made it
suitable for practical applications. Li et al. [63,64]
conducted research about smartphone-based footbridge
monitoring through the analysis of scooter vibrations. The
researchers developed a two-dimensional CNN model that
processed time-frequency representations to achieve
better results than a one-dimensional CNN using
frequency spectra. Field tests and simulations
demonstrated the validity of this approach, enhancing
damage sensitivity while reducing environmental noise
disturbances and extending indirect SHM capabilities
beyond traditional vehicle-based methods.

In 2024, recurrent neural networks improved ML models
for drive-by monitoring. The authors of [65] developed a
damage detection method based on Long Short-Term
Memory networks that utilized vehicle-bridge interaction
models for contact point response data. The damage index
based on Euclidean Distance allowed their method to
detect structural anomalies with high precision. The
numerical simulations showed that road roughness
reduced effectiveness, but further improvements were
required for real-world applications. Researchers
conducted experimental testing of drive-by monitoring
systems. The authors Corbally and Malekjafarian [66]
implemented their data-driven algorithm through
experiments on laboratory-scale vehicle-bridge interaction
models. The proposed method established the Operating
Deflection Shape Ratio as an indicator to detect both
midspan cracking and seized bearings. The researchers
Corbally and Malekjafarian [67] created a DL-based
framework that performed damage type, location, and
severity classification. A vehicle-bridge interaction model
provided training data labels to develop a detection
system that reached high accuracy levels independently of
pre-established damage scenarios and established itself as
an efficient alternative to traditional SHM. Indirect SHM

benefited from improved performance through the
implementation of DL-based image processing techniques.
A 2D CNN for indirect bridge damage identification was
introduced by Chen et al. in [68], which converted vehicle
acceleration signals into time-frequency images through
continuous wavelet transform. The method showed
excellent localization abilities together with effective
suppression of road surface irregularities. Wang et al. [69]
created a data-derived method to detect breathing cracks
in plate-like bridges. The damage indicator of contact point
displacement variation led to the training of a CatBoost
model on data from finite element simulations. Numerical
simulations, together with laboratory experiments,
validated the framework, which exhibited resistance to
road roughness along with varying vehicle speeds.

Unsupervised learning. The development of drive-by
SHM now uses unsupervised learning methods, domain
adaptation techniques, and autoencoder-based
approaches to enhance bridge damage assessment
capabilities. These methods make it possible to eliminate
extensive datasets while improving the scalability together
with the practicality of indirect monitoring across diverse
structures throughout various operational conditions.

In 2023, Liu et al. [70] established HierMUD as a
hierarchical multi-task unsupervised domain adaptation
framework that transferred knowledge from labeled
bridges to unlabeled ones. With its use of adversarial
learning, HierMUD extracted domain-invariant task-
informative features that led to accurate damage detection
and localization alongside quantification needs without any
target domain labelling requirements. This diagnostic
system used several bridge and vehicle platforms, which
led to substantial improvements in real-world diagnostic
outcomes. The exploration of real-time damage detection
in structures became possible through DL-based
approaches. Li et al. [71] established a bridge monitoring
system that operated in real time through the
implementation of deep auto-encoders. The analysis of
short-time vehicle vibration frequency responses rather
than extended signals proved effective for reducing noise
disturbances. The continuous beam laboratory model
demonstrated 86.2% accuracy when testing the system,
which indicated its viability for quick SHM implementation.
Drive-by SHM frameworks benefited from the improved
effectiveness that unsupervised learning techniques
provided. The researchers Calderon Hurtado et al. [72]
created an adversarial autoencoder system for performing
indirect bridge surveillance. The model generated accurate
reconstructions of vehicle acceleration signals under
healthy conditions, so damage detection became possible
by analyzing deviations from these expected responses.
Testing through simulations and laboratory experiments
confirmed the system's resistance to environmental
fluctuations while achieving better results than standard
unsupervised methods.

In 2024, Hurtado et al. [73] created an entirely automated
drive-by BHM system using computer vision with
unsupervised techniques. The method examined
frequency-domain vehicle reactions  through a
combination of empirical Fourier decomposition with
convolutional autoencoders. Numerical testing and
experiments validated this method to be robust against
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road roughness effects as it maintained high performance
levels for automated bridge condition assessment. A
specialized drive-by monitoring system targeting railway
infrastructure was created by de Souza et al. [74]. They
used Log-Mel spectrograms from train acceleration data to
establish their sparse autoencoder system. The model
utilized damage indices based on statistical distribution
computations, which showed both strong sensitivity for
detecting initial damage and operational and
environmental robustness, thus making them ideal for
high-speed railway conditions. The authors Fernandes et
al. [75] designed a scour damage detection system for
railway bridges, which combined deep autoencoders with
optimally positioned sensors for selected applications.
Their model used vehicle acceleration data to detect
stiffness reductions at bridge piers, which was a signature
sign of scour-related deterioration. Numerical simulations
verified that the method had excellent precision for
identifying minimal scour damage while managing
operational ranges and enhancing proactive maintenance
of railway bridges.

3 Discussions and suggestions

The recent developments in vibration-based BHM through
artificial intelligence techniques have been the focus of this
last section. Applications of AI have enhanced the
accuracy and efficiency while introducing automation to
SHM systems while handling three fundamental issues
related to abnormality detection, data restoration, and
bridge inspection. The review reveals multiple significant
trends together with difficulties that have appeared.

At present, Al-based SHM employs supervised learning
approaches because supervised learning techniques
achieve superior accuracy during training with labelled
datasets. The acquisition of damage-labelled data
preserves significant challenges, thus driving deep interest
toward unsupervised and semi-supervised learning
methods. Unsupervised learning technology like
autoencoders and clustering algorithms demonstrate their
usefulness for uncovering anomalies automatically, which
makes them suitable for practical applications that do not
use labelled damage information.

Al-driven SHM faces considerable obstacles from
environmental factors along with operational conditions
that can affect its performance. The monitoring system
produces incorrect outcomes because temperature shifts
together with humidity and heavy traffic patterns make it
difficult to detect damage. Domain adaptation techniques
alongside TL and physics-informed AI modelling enable
researchers to overcome this issue by separating
structural variations resulting from damage from those
caused by environmental factors.

When performing SHM, practitioners must select between
direct and indirect monitoring methods as essential
monitoring elements. Direct monitoring uses sensors
attached to bridges to deliver precise structural data, but
it demands substantial effort as well as high financial
costs. Vehicle response monitoring provides a less
expensive method for conducting indirect SHM in
comparison to direct sensor installations. Representing the
natural vibrations of bridges from additional sources like

road conditions and vehicles poses a detection difficulty.
ML techniques support the development of physics-based
methods to improve indirect monitoring methods while
making them suitable for practical applications.

Real-time SHM systems and predictive maintenance
utilizing AI continue to develop at a rapid pace, which
allows engineers to develop warning systems for early
structural deterioration identification. Essential structural
safety improvements together with operational efficiency
increase due to the combination of ML with edge
computing and cloud-based platforms [76,77]. Research
needs to enhance computing efficiency for the
implementation of real-time Al-based SHM systems, which
allows deployment at scale and produces effective
infrastructure monitoring solutions.

4 Conclusions

Using Al techniques for vibration-based BHM has shown
great potential in bridge engineering. These approaches
have shown significant detection capabilities and improved
efficiency and automation degree for bridge condition
assessment. This review has highlighted key
methodologies, advancements, and existing challenges in
current studies. Some concluding remarks can be drawn:

1) DL models have significantly improved the sensitivity
of SHM systems to minor bridge damage and shown
great potential to surpass traditional modal-based
approaches.

2) Due to the limited data for damaged cases, the
transition from supervised to unsupervised learning is
critical for achieving scalable and generalized damage
detection models.

3) Environmental and operational variability remains a
challenge for practical engineering applications, which
necessitates the development of robust AI models.

4) The indirect method offers a cost-effective alternative
to traditional sensor-based systems, but challenges in
extracting bridge information from vehicle dynamics
need further investigations.

Based on the authors’ best understanding, future research
in this field needs to focus on AI applications together with
emerging techniques, e.g., digital twins, edge computing,
and Internet of Things, to create more adaptive and
intelligent bridge monitoring frameworks. In addition, as
this field is highly interdisciplinary, it requires collaboration
among civil engineers, Al researchers, and policymakers.
Such cooperation is essential for developing standardized
AlI-driven SHM solutions that enhance the safety of bridges
worldwide.
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