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Abstract. Bridge frequencies are important characteristics for its lifecycle con-
dition assessment. The drive-by method, which only requires several sensors
installed on the passing vehicle and employs vehicle responses to extract essen-
tial information about the bridge, has been a focus in the last two decades due to
its low-cost and efficient nature. Such a method typically relies on the vehicle-
bridge interaction and assumes that the bridge’s frequency does not change dur-
ing the vehicle passage. However, practical applications indicate that the bridge
frequencies can change during the interaction process, especially when the vehi-
cle mass is comparable to that of the bridge. This paper further investigates the
time-varying frequency of the vehicle-bridge interaction system incorporating
a two-axle vehicle and a simply supported bridge. Firstly, the semi-analytical
solution for time-varying bridge frequency was developed and numerical simula-
tions were performed to verify the solution. Different frequency and mass ratios
between the vehicle and bridge were explored. Then, the approach to acquire
clear time-frequency representations of the vehicle responses for bridge frequency
extraction was presented, and ridge extraction was employed to extract the traces
of time-varying bridge frequencies. Finally, laboratory experiments, including a
scaled two-axle vehicle and a steel beam model, were conducted and the effec-
tiveness of the proposed method for extracting time-varying bridge frequencies
was demonstrated.

Keywords: Vehicle-bridge interaction · Bridge frequency · Drive-by ·
Time-varying

1 Introduction

Many bridges in Europe have been in service for quite many years. Recently, it has been
discovered that some of these bridges are experiencing aging and deterioration, which
could lead to potential failures if regular maintenance is not properly conducted. There-
fore, monitoring the health condition of bridges has become crucial, and comprehensive
reports on bridge assessments and residual life predictions are essential. Among various
bridge assessment methods, vibration-based approaches have proven to be promising
and effective for indicating the health condition of bridges. Over the past decades, the
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dynamic characteristics of bridges have been utilized as reliable damage indicators [1,
2].

Among all dynamic characteristics, the natural frequency (referred to as “frequency”
in this paper) of a bridge is one of the most fundamental and important indicators, as it
can be used to detect the presence of damage [3]. Traditionally, obtaining the bridge’s
frequencies requires engineers to install sensors on the structure. However, with the
growing demand for labor and the increasing number of newly constructed bridges, this
method has become both time-consuming and costly [4]. Therefore, there is a need for
new, efficient, and cost-effective technologies to regularly monitor bridge conditions
based on their frequencies.

In 2004, Yang et al. [5] proposed the indirect method, successfully identifying bridge
frequencies using a spring-mass-modeled vehicle. This study laid the foundation for
further developments in identifying bridge modal shapes and damping ratios through
vehicle responses [6, 7], as well as in damage detection [8–10]. The identification of
bridge frequencies from vehicle responses has been extensively studied. Researchers
have employed vehicles with modified parameters [11, 12], analyzed residual responses
from connected vehicles [13, 14], and utilized contact-point responses [15, 16]. These
methods have effectively minimized the influence of vehicle dynamics and road rough-
ness. However, it is important to note that the indirect method heavily relies on vehicle-
bridge interaction (VBI).Most studies have assumed that vehicles donot cause significant
variations in bridge frequencies. Recent research has demonstrated that heavy vehicles
can enhance the transfer of bridge information to vehicle vibrations [17, 18]. However,
heavy vehicle traffic can introduce variability in bridge frequencies, potentially mask-
ing frequency changes caused by bridge damage. Therefore, when heavy vehicles are
used, researchers should focus on analyzing time-varying bridge frequencies rather than
relying solely on frequencies identified from the vehicle response spectrum.

Time-frequency analysis provides crucial insights for examining non-stationary sig-
nals. In 2017, Cantero et al. [19] observed the evolution of bridge frequencies and vibra-
tion modes during truck passages in field tests. However, traditional methods such as
the short-time Fourier transform (STFT) and wavelet transform (WT) often suffer from
blurred time-frequency representations (TFRs),making it difficult to clearly capture vari-
ations in bridge frequencies. In 2013, Yang et al. [20] analytically derived the analytical
frequency evolution of a VBI system modeled with a spring-mass and a simply sup-
ported beam. Later, in 2020, Li et al. [21] successfully identified the clear time-varying
characteristics of bridge frequencies from vehicle responses using the synchroextracting
transform. In 2023, Tan et al. [22] extracted time-varying bridge frequencies from drive-
by vehicle vibrations in a laboratory experiment, developing an adaptive second-order
synchrosqueezing transform. In the same year, He et al. [23] explored the identification
of higher-order modal frequencies of bridges using the synchrosqueezing transform,
validating the method through numerical simulations and experiments. Despite these
advancements, existing studies have typically relied on simple spring-mass models,
with limited consideration of vehicle pitching effects. Additionally, recent research has
revealed that high-order synchrosqueezing transform methods are highly sensitive to
noise, often producing unsatisfactory results when applied to signals with significant
noise interference.
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This paper explores the evolution of bridge frequencies when a two-axle vehicle
passes over a bridge. First, a new semi-analytical solution is developed to describe the
time-varying frequencies of theVBI system,which includes a two-axle vehicle and a sim-
ply support bridge. Next, the frequency amplification ratios of the system are analyzed
under varying vehicle-bridge frequency andmass ratios. Additionally, an enhanced algo-
rithm, the improvedmultisynchrosqueezing transform (IMSST), is employed to generate
clear TFRs, and ridge extraction is used to trace the time-varying bridge frequencies.
Finally, laboratory experiments using a scaled two-axle vehicle and a steel beam model
are conducted to demonstrate the effectiveness of the proposed method for extracting
time-varying bridge frequencies. The remainder of this paper is organized as follows:
Sect. 2 presents the semi-analytical solutions for time-varying bridge frequencies and
the fundamental theories for extracting the bridge’s instantaneous frequencies (IFs) from
vehicle responses. Section 3 explores the effects of vehicle-bridge frequency and mass
ratios on bridge frequency amplification. Section 4 provides experimental validation
using a scaled truck and a steel beam. Finally, the paper is concluded in Sect. 5.

2 Theories

In this paper, the vehicle is modeled as a single mass mv, supported by two springs
with stiffness values k1 and k2. The vehicle’s moment of inertia is denoted by Jv. The
axle distance is represented by a, with the center of gravity defined by a1 and a2. .
The vehicle exhibits two degrees of freedom (DOFs): vertical displacement of the body
(zv) and body rotation (θv), as illustrated in Fig. 1. The bridge is modeled as a simply
supported Euler–Bernoulli beam, characterized by a length L, flexural stiffness EI , and
mass per unit length m. For the analytical derivation, the influences of road roughness
and damping are not included.

Simply supported bridge
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Fig. 1. Analytical model of the two-axle vehicle and bridge

The equilibrium equations for vibrations of the bridge and two-axle vehicle can be
denoted by Eqs. (1), 2 and (3),

mu(x, t) + EIu(x, t) = 2

i=1
fci(t)δ(x − xci) (1)

mvz̈v + k1(zv + a1θv − uc1) + k2(zv − a2θv − uc2) = 0 (2)
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Jvθv + k1a1(zv + a1θv − uc1) − k2a2(zv − a2θv − uc2) = 0 (3)

where u(x, t) denotes the deflection of the bridge. The notation (˙) indicates differen-
tiation with respect to time t, while ( ) represents differentiation with respect to the
bridge position x. The term δ(·) refers to the Dirac delta function. The contact force
between the vehicle and the bridge is denoted by fci(t), which can be expressed as
fci(t) = ki(zvi − uci) − mvig and zvi = zv + (−1)i+1θvai, i = 1, 2. Here, zvi is the i-th
axle’s displacement, and mvig = mvg(a − ai)/a is the axle weight. g Represents the
acceleration due to gravity. uci Denotes the deflection of the beam at the i-th contact
point. The vertical deflection of the beam can be expressed using modal superposition.
For simplicity, only the first mode of the beam is considered in analytical solutions. The
beam’s deflection can be represented as

u(x, t) = qb(t)sin(πx/L) (4)

where qb(t) is the generalized coordinate (with t omitted for simplification in later steps).
While higher modes of the beam can be included, they primarily increase mathematical
complexity without significantly enhancing the understanding of the physical behavior
[20]. In contrast, incorporating additional DOFs for the vehicle is valuable, as it aids in
comprehending physical phenomena relevant to practical engineering applications. By
substituting Eq. Into Eq., we obtain

m sin
πx

L
q̈b + EIπ4

L4
sin

πx

L
qb = 2

i=1
ki zvi − sin

πxci
L

qb − mvig δ(x − xci) (5)

Note that the Dirac delta function appears in Eq. (5). It is multiplied by the mode
sin(πx/L) and integrated with respect to x from 0 to L. After rearranging all terms related
to q̈b, qb, zv, and θv, we obtain

mL
2 q̈b + EIπ4

2L3
+ 2

i=1 kisin
2(πxci

L ) qb − 2
i=1 kisin(

πxci
L ) zv

− 2
i=1(−1)i+1kiaisin(

πxci
L ) θv = − 2

i=1mvigsin(
πxci
L )

(6)

By substituting Eq. (4) into Eqs. (2) and (3), we obtain

mvz̈v − 2

i=1
kisin

πxci
L

qb + (k1 + k2)zv + (k1a1 − k2a2)θv = 0 (7)

Jv θ̈v − 2

i=1
(−1)i+1kiaisin

πxci
L

qb + (k1a1 − k2a2)zv + k1a
2
1 + k2a

2
2 θv = 0

(8)

Equations (6), (7), and (8) can be organized into a matrix form, as presented in
Eq. (9)

Ms[q̈b, z̈v, θ̈v]T + Ks qb, zv, θv
T = fs (9)
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whereMs,Ks represent the mass and stiffness matrices of the VBI system, respectively,
and the vector fs denotes the applied forces. The components of these matrices and the
force vector are detailed in Eqs. (10) and (11).

Ms =
⎡

⎣
mL
2 0 0
0 mv 0
0 0 Jv

⎤

⎦, fs = − 2

i=1
mvigsin(

πxci
L

), 0, 0
T

(10)

Ks =
⎡

⎢⎣

EIπ4

2L3
+ 2

i=1 kisin
2(

πxci
L ) − 2

i=1 kisin(
πxci
L ) − 2

i=1(−1)i+1kiaisin(
πxci
L )

− 2
i=1 kisin(

πxci
L ) k1 + k2 k1a1 − k2a2

− 2
i=1(−1)i+1kiaisin(

πxci
L ) k1a1 − k2a2 k1a

2
1 + k2a

2
2

⎤

⎥⎦ (11)

The equations presented above account for the interaction between the two-axle
vehicle and the bridge. It is important to note that the stiffness matrix of the VBI system
varies over time as the vehicle moves across the bridge. As a result, the frequencies
of both the bridge and vehicle will vary. When the vehicle and bridge are considered
separately, without interaction, each retains its original frequencies. The fundamental
frequency of the bridge, in isolation, can be determined by ωb1,0 = π2/L2

√
EI/m. For

the vehicle, the original vertical and pitching frequencies [24] are presented in Eq. (12),

ω2
v0,p0 = 1

2

⎛

⎜⎝
k1 + k2
mv

+ k1a
2
1 + k2a

2
2

Jv
± k1 + k2

mv
− k1a

2
1 + k2a

2
2

Jv

2

+ 4(k1a1 − k2a2)
2

mvJv

⎞

⎟⎠ (12)

where ωv0,p0 represent the original vertical and pitching frequencies of the vehicle with-
out interactionwith the bridge. During the interaction between the vehicle and the bridge,
the system’s time-varying frequencies can be determined by solving the eigenvalue
problem presented in Eq. (13).

det Ks − ω2Ms = 0 (13)

Let = ω2 0. It can be observed that Eq. (13) is a cubic equation in terms
of . An efficient approach to find its solution is to find the numerical roots when all
other parameters are known except . Since Ks andMs consist of real numbers and are
both symmetric and positive definite, will always yield real and positive solutions.
Consequently, the time-varying frequencies of the VBI system, ωb1, ωv, and ωp, can be
determined by ω = √

as the vehicle moves across different positions on the bridge.
Then, the IMSST algorithm [25, 26] was adopted to generate TFRs of the vehicle’s
vibrations, which is more concentrated than that generated by the traditional algorithms,
such as STFT and WT. Then, a popular multi-ridge extraction algorithm [27, 28] is
employed to extract IFs of the VBI system.

3 Effects of Vehicle-Bridge Frequency and Mass Ratios

After the analytical solution is obtained in the last section, in this section, the effects of
vehicle-bridge frequency and mass ratios on bridge frequency amplification are inves-
tigated. In the following content, the frequency (f ) expressed in Hz is utilized instead
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of the circular frequency (ω) in rad/s. Here, f 0b1 = ωb1,0/2π , and f 0v,p = ωv0,p0/2π .

The shared parameters for all vehicles are as follows: Jv = 700 kg · m2, a1 = 0.5 m,
a2 = 1.5 m. For the bridge, it is divided into 50 elements, with the following parameters:
L = 25 m, E = 27.5 GPa, I = 0.15 m4, and m = 2000 kg/m. With these parameters,
the original frequencies of the bridge without interaction with vehicles can be calculated
as f 0b1 = 3.609 Hz, f 0b2 = 14.438 Hz, f 0b3 = 32.485 Hz. Damping effects and road rough-
ness are temporarily ignored for theoretical validations in this section. Then, mv/mL is
modified from 0.01 to 0.5 with an increment of 0.01, and the frequency ratio f 0v /f 0b1
varies from 0.05 to 2 with an interval of 0.05. Figure 2 has shown the bridge frequency
amplification ratio.
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Fig. 2. Analytical model of the two-axle vehicle and bridge.

As can be seen, Fig. 2 illustrates the maximum frequency amplification ratios of fb1,
specifically when the vehicle’s center of gravity crosses the midpoint of the bridge. Two
different x-axes are used to depict the amplification effects. Figure 2a shows that as the
ratio f 0v /f 0b1 increases, distinct frequency amplification peaks and valleys begin to appear
when the ratio approaches 0.4. In comparison, Fig. 2b reveals that even when f 0v /f 0b1
is less than 1.0, f 0p /f 0b1 approaches 1.0, leading to low-peak frequency amplifications.
Furthermore, these low peaks and valleys exhibit minimal sensitivity to mass ratios. As
f 0v /f 0b1 continues to increase in Fig. 2a, it becomes evident that the most significant peaks
and valleys occur around a f 0v /f 0b1 ratio of 1.0. At this point, f 0p /f 0b1 rises steadily from
1.5 to 2.5. Additionally, the mass ratio has a notable effect on frequency amplification,
with lower vehicle-bridgemass ratios showing relatively limited influence. Based on this
analysis, it can be concluded that the resonance between the vehicle’s vertical frequency
and fb1 significantly affects the bridge’s fundamental frequency. However, the vehicle’s
pitching frequency also induces notable frequency amplification in fb1, even when the
mass ratio has a minimal impact on the amplification. In the following section, in order
to clearly see the frequency amplification, a relatively heavy vehicle is employed in this
paper.
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4 Experimental Validation

4.1 Experimental Setups

In the laboratory experiments, a scaled truck and a steel beam are utilized to simulate the
VBI system. Figure 3a has depicted the experimental setup overview. The vehicle’s mass
is 5.357 kg. One accelerometer is installed on the vehicle’s body, as shown in Fig. 3b.
Note that the vehicle’s speed may change a little during the passage but is kept around
0.11 m/s. The truck’s first two frequencies f 0v1 and f 0v2 are obtained as 19.708 Hz and
43.528 Hz. For the bridge, it is simulated by a beam shown in Fig. 3a. The beam’s length
is 6.0 m, and 0.15 m is reserved for each end. The beam’s mass is 248.64 kg, making
the vehicle-bridge mass ratio 2.155%. Two accelerometers are installed on the 1/3 span
of the bridge to collect its vibrations. With impulse impact excitation, the beam’s first
three frequencies, f 0b1, f

0
b2, and f 0b3 are obtained as 7.499, 28.997, and 49.095 Hz.

(a) Experimental overview (b) Truck

Fig. 3. Experimental setup.

4.2 Results and Discussions

When the truckmoves on thebeam, the frequency spectrumof thevehicle’s body is shown
in Fig. 4a. It reveals that the bridge’s first two natural frequencies can be identified.
However, it is important to note that the results obtained through direct Fast Fourier
Transform (FFT) do not capture the time-varying characteristics of the VBI system. To
address this, the IMSST is employed to analyze the vibrations of both the vehicle body
and the bridge, as illustrated in Fig. 4b and c. The window length for the IMSST is set to
12288. From the direct measurement of the bridge vibrations, it is clearly observed that
the bridge’s fundamental frequency decreases as the vehicle passes over it, while the
variation in the second frequency is less pronounced. Additionally, the decrease in the
bridge’s fundamental frequency is also detectable in the vehicle’s responses, as shown
in Fig. 4c.
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(a) FFT of vehicle responses (b) IMSST of vehicle responses

(c) IMSST of bridge responses (d) Extracted IFs from the vehicle and bridge
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Fig. 4. Time-varying bridge frequency identification results.

The ridge extraction results for the bridge’s fundamental frequency (fb1) from the
TFRs of both the vehicle and bridge responses are presented in Fig. 4d. These results
demonstrate that the time-varying frequency of the bridge during the VBI process can be
accurately captured by the drive-by vehicle. However, when the vehicle enters or exits
the bridge, the fundamental frequency of the bridge is not as effectively captured. This is
because the vehicle starts to collect bridge vibration data only upon entering the bridge
and ceases to do so once it leaves.

5 Conclusions and Future Studies

In this paper, the time-varying frequencies of a bridge subjected to a moving two-axle
vehicle are investigated. Novel semi-analytical solutions for the VBI system are derived.
Using these solutions, the amplification of bridge frequencies is analyzed concerning
the vehicle-bridge frequency and mass ratios. Subsequently, in laboratory experiments,
the IMSST is employed to produce clear TFRs of the vibrations recorded from both the
vehicle and the bridge. Based on these investigations, the following conclusions can be
drawn:

1. The frequency amplification results, obtained under different vehicle-bridge fre-
quency andmass ratios, clearly indicate that both the pitching and vertical frequencies
of the vehicle influence the variation of the bridge’s time-varying frequencies.
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2. The effect of the vehicle’s pitching frequency is less significant compared to that of
the vertical frequency. Additionally, an increase in the vehicle’s mass leads to greater
amplification of the bridge’s frequencies.

3. When the TFRs generated by IMSST are utilized, experimental results show that
the extracted time-varying IFs from both the vehicle and bridge vibrations closely
match. Thiswell demonstrates the effectiveness of the presented indirect time-varying
IF extraction approach.

Although the time-varying characteristics of the bridge were studied in this work,
the influence of additional factors, such as multi-axle vehicles and heavy ongoing traffic,
needs to be further investigated in future studies.
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