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Abstract. Traditional Structural Health Monitoring (SHM) technologies have
not yet been widely adopted by infrastructure asset managers. However, with the
recent advancements in information technology and artificial intelligence (Al),
modern SHM has brought greater practical potential. Al-based SHM often relies
on big data, but in practice, data availability is a problem, especially for some
difficult-to-obtain cases. Theoretically, Generative Adversarial Networks (GANs)
can augment data and significantly expand databases. On the other hand, some
argue that GAN models can be challenging to train and that the amount of data
required to train a GAN might be sufficient to train a diagnostic model. More
importantly, the data generated by GANs may not truly capture the underlying
physical characteristics. To address these, this paper proposes to use physical
laws to guide GANs, with TimeGAN adopted as the base model due to its strong
performance with time-series data. In this study, the proposed physics-guided
TimeGAN (PyTiGAN) is used for data expansion in bridge SHM under the exci-
tation of traffic events. The results demonstrate the effectiveness of the proposed
method in expanding bridge SHM datasets from multiple dimensions.

Keywords: Structural health monitoring - Data expansion - Al - TimeGAN -
Physics-guided GANs - Vehicle-bridge interaction

1 Introduction

The maintenance and management of infrastructure assets, such as bridges, are crucial
for ensuring public safety and sustaining economic activities. Over the years, Structural
Health Monitoring (SHM) has emerged as a vital means for assessing the condition of
infrastructure and detecting early signs of deterioration [1]. However, traditional SHM
technologies have not yet seen widespread adoption by asset managers. On-site surveys
are typically conducted by experienced experts through visual monitoring. However,
these methods have several limitations, including high labor costs, operational disrup-
tions, etc. [2]. Though sensor-based SHM offers an alternative approach, it comes with
its own challenges, such as the high cost of sensor installation and maintenance, as well
as the complexity of data processing—where raw signals, such as vibrations, must be
converted into human-readable information [3]. Furthermore, because the equipment
is permanently attached to the infrastructure as a customized SHM system, it could be
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challenging to transfer one monitoring framework to others [4]. With the rapid advance-
ments in information technology and artificial intelligence (AI), modern SHM systems
have started to demonstrate significant potential for overcoming these barriers, paving
the way for more practical and scalable solutions [5-7].

One of the key advantages of modern SHM is its ability to leverage Al-powered
algorithms for real-time data analysis and decision-making. Al-based SHM systems
often rely on big data collected from vehicles, drones, and other sensing equipments [8].
However, in practice, data availability remains a significant challenge, particularly for
scenarios that are difficult or expensive to monitor consistently. For example, data for
extreme events, such as bridge responses under heavy traffic loads or unusual environ-
mental conditions, are often sparse [9]. The scarcity of such data can limit the ability
of Al algorithms to learn robust patterns, thereby reducing the reliability of diagnostic
models. Addressing this issue has become a critical research focus in SHM.

In theory, Generative Adversarial Networks (GANSs) offer a promising approach to
augmenting datasets by generating synthetic data that mimics real-world observations.
GANS s have gained considerable attention across multiple domains, including image pro-
cessing, speech synthesis, and medical diagnosis, for their ability to generate realistic
and high-dimensional data [10]. By applying GANs to SHM, researchers can poten-
tially expand existing datasets, enabling the development of more robust and accurate
diagnostic models. However, despite their promise, GANs face several limitations [11].
First, GANs are notoriously difficult to train, requiring careful hyperparameter tuning
and significant computational resources. Second, the amount of data required to train a
GAN model can often rival or exceed the data needed to directly train a diagnostic model.
Finally, and most critically, the synthetic data generated by GANs may fail to capture
the underlying physical characteristics of the monitored system, leading to potential
inaccuracies in downstream applications.

To address these challenges, the authors are interested in integrating physics-domain
knowledge into GAN architectures. Specifically, incorporating physical laws into the
data generation process can guide the synthetic data to better mimic the real-world
responses of infrastructure systems. In this context, this paper proposes a novel physics-
guided GAN (PyTiGAN) framework for SHM, with a focus on time-series data. The
TimeGAN model, known for its strong performance in handling temporal dependencies,
is adopted as the base architecture [12]. By embedding physical principles into the
training process, the proposed PyTiGAN enhances the quality and reliability of the
generated data. The proposed framework will be validated within a bridge SHM system
under the excitation of traffic events. This enriched dataset can enable the development of
more accurate diagnostic models, ultimately supporting more informed decision-making
for infrastructure maintenance and management.

2 Proposed Algorithm

2.1 Overview of TimeGAN

TimeGAN is a generative model specifically designed for time-series data, combining
adversarial training with supervised learning to enhance temporal dependencies in gen-
erated sequences [12]. Unlike traditional GAN s that may struggle to maintain coherence
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in sequential data, TimeGAN introduces an embedding function that maps both real and
synthetic data into a shared latent space, ensuring consistency in temporal structures.
The TimeGAN framework consists of four key components:

1. Embedding Network: Transforms raw time-series data into a latent space represen-
tation to capture essential temporal dependencies.

2. Recovery Network: Reconstructs time-series data from the latent space, ensuring
fidelity to the original input.

3. Generator & Adversarial Networks: The generator creates synthetic sequences
based on sampled latent vectors, while the adversarial discriminator differentiates
real from synthetic data.

4. Supervised Loss: Enforces consistency between latent representations of real and
generated data, aiding in training stability and improving synthetic data quality.

In TimeGAN, the most critical formula is the combined objective function,
which integrates adversarial training, supervised learning, and embedding consistency.
This ensures the generated time-series data preserves temporal dependencies while
maintaining realism. The key formula is:

mGzn max Lagy + ALgyp + ¥ Lyec (L

where: L4, is the adversarial loss, ensuring the generated data is indistinguishable from
real data. Ly, is the supervised loss, enforcing consistency in the latent space between
real and generated sequences. L, is the reconstruction loss, ensuring the generated
sequences can be mapped back to meaningful real-world data. A and y are weighting
factors that balance these terms.

The training process follows a two-stage approach:

1. Pretraining with Supervised Learning — The embedding and recovery networks
are trained first, ensuring that the model learns accurate latent representations of
time-series data.

2. Adversarial Training — The generator and discriminator networks are then trained
iteratively to produce realistic time-series sequences that align with real data
distributions.

By this way, TimeGAN effectively generates high-quality synthetic data while pre-
serving critical temporal structures. However, the generated sequences may not always
align with real-world physical behaviors, particularly in SHM applications.

2.2 PyTiGAN

To address it, a physics-guided approach is proposed, incorporating domain-specific
physical knowledge into the data generation process. This ensures that synthetic data not
only preserves statistical patterns but also complies with the fundamental physical laws.
In this study, the bridge SHM scenario based on vehicle-induced excitation involves a
vehicle crossing a simply supported beam bridge. It should be ensured that the generated
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bridge response adheres to the governing equations of motion for a simply supported
beam under vehicular excitations (Euler-Bernoulli beam model) [13]:

[Mv]{uv} + [Cv]{uv} + [Kv]{uv} = {ch} )

(Mp iy} + [Cpl{ity} + [Kpl{up} = {Fep} 3)

where [M, ], [C,], and [C, ] are the mass, damping, and stiffness matrices of the vehicle,
respectively; [Mp], [Cp] and [K}] represent the mass, damping, and stiffness matrices of
the bridge model, respectively. In the equations, {u,} is the displacement vector of the
vehicle and {u,,} is the nodal displacement of the bridge system. {F,} and {F,} stand
for the time-varying interaction forces on the vehicle and the bridge, respectively.

We aim to obtain the physical solution. For a 2-DOF vehicle model, its subsystem
matrices and response vector are as follows:
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where m,, and m; are the body and axle masses; ¢; and ¢; stand for the suspension and tire
damping; ks and k; denote the suspension and tire stiffnesses; y, and y; are the vertical
displacements of the vehicle body and the axle.

The bridge is considered as a simply supported Euler-Bernoulli beam, with two DOFs
at each node (vertical translation and rotation). It has a length of L, a uniform flexural
rigidity of EI, and a mass per unit length of m. Mass-stiffness proportional Rayleigh
damping is used to simulate the bridge’s damping. These are illustrated in Fig. 1.

ffffff

|

Fig. 1. Vehicle-bridge interaction model.

The process can be solved by employing the Newmark-Beta method to acquire the
bridge’s dynamic responses (8 = 0.25,y = 0.5). Based on the experimental beam
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and vehicle model used in our studies, the parameters can be selected as follows: m =
1250 kg/m, EI = 2.6 x 10> N-m?, L =45m, m, = 1.6 x 10* kg, m; =7 x 103 kg,
cs=1.0x10*N-s/m,¢c; =0, ks =4 x 10> N/m, k, = 1 x 10* N/m, and v = 9 m/s.
The road surface roughness can be simulated according to ISO 8608 [14]. Class-A level
roughness is selected to represent the road condition of the experiment in this paper. For
more details about VBI, please refer to the author’s previous work [15-17].

The physical solution obtained from the VBI process, denoted as Phy, will be incor-
porated into the training process. Assuming a processor consists of a function I'(-), it
maps the input physical solution Phy to a processed representation Phy’ (see Eq. 8). It
aims to compress the target time series into a structured latent representation.

Phy’ = T (Phy) (®)

A new loss term is constructed as the mean squared error (MSE) between the synthetic
embedding E,, generated by the generator’s embedder from simulated noise z, and the
processed target time series Phy’, obtained through the processor.

Mathematically, it can be expressed as:

L XL E (n,1.f) 1(n,t.f) 2
Lowy = i 2 12 32 (B = Py ) ©)
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where N is the number of samples, T is the number of timesteps, and T is the number
of features. This loss term ensures that the generated embeddings align closely with the
known nature of the target time series and is incorporated into the generator loss function
with a weight factor «. Phy’ influences the loss function and optimization, encouraging
the generator to align its embeddings E, with the expected target patterns, ultimately
guiding the synthetic time series toward more physically realistic representations.

3 Experiments

To evaluate the effectiveness of PyTiGAN, we will compare it with TimeGAN using a
dataset collected from laboratory experiments. Additionally, a linear SVM model will
be trained to classify healthy and damaged datasets; they can assess the effectiveness of
the data in some aspects.

To ensure a comprehensive evaluation, we assess the quality of generated data based
on three key criteria: (1) Diversity — the generated samples should exhibit a broad distri-
bution that effectively captures the variability of real data; (2) fidelity — the synthetic data
should be indistinguishable from real data in terms of statistical and temporal properties.
(3) usefulness — when used for SHM tasks, synthetic data should perform comparably
to real data.

3.1 Experimental Setup

The experimental setup involves a HEA400 beam model representing the bridge, with
key physical properties including an elastic modulus of £ = 199 GPa; density p =
7.85 x 103 kg/m3; length L = 4.4 m; section area A = 15898 mm?, and moment of
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inertia I = 8.564 x 10" mm®. The bridge’s sectional dimensions are shown in Fig. 2,
and the layout of the bridge model, which includes an acceleration ramp, deceleration
ramp, and a wire system for vehicle guidance, is also illustrated. For the purposes of
the experiment, artificial damage is introduced by adding mass at the mid-span of the
bridge, an accelerometer is mounted on the mid-span to collect vibration data as the
vehicle crosses the bridge. The data is captured using a PC-driven data acquisition
system with a sampling rate of 1 kHz. The bridge model arranged, damage pattern, and
sensor installation in the laboratory are shown in Fig. 3a, b, and c.

Scale truck model

Additional mass 1
4000

Acceleration ramp Deceleration ramp

Fig. 2. Bridge model (unit: mm).

\ \ - :
(a) Steel beam (b) Additional mass (c) Sensor

Fig. 3. Beam model setup.

The vehicle model used is a Tamiya Mercedes-Benz 1850 L (1/14 scale, 568 mm x
202 mm) designed to accurately simulate a full-sized truck, except for its weight (see
Fig. 4a). The self-weight of the vehicle is 4.05 kg, with an additional 5-kg mass inside
the body, giving it a total weight of 9.05 kg. The vehicle’s speed ranges from 0.825 m/s
to 1.025 m/s across runs, with an average of 0.93 m/s (see Fig. 4b). The vehicle is
repeatedly maneuvered across the bridge to collect data. In total, one healthy state and
four damaged cases are used (see Table 1). The healthy state has 200 vehicle runs, while
each damaged state also includes 200 runs.

3.2 Results

The PyTiGAN is configured with the following parameters: The model architecture
comprises 4 layers, a hidden dimension of 32, and a time step size of 40. A and y
are selected to 0.01 and 5, respectively. The learning rate is 0.0001, optimized using a
batch size of 64. The Physics loss weight « is set to 0.5. The length ratio of training to
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Fig. 4. Vehicle model setup.

Table 1. Damaged cases.

1.0 1.1

Case No |Location | Weight Runs |Case No |Location | Weight Runs
1 Mid-span |4 kg (0.8%) |200 2 Mid-span | 6 kg (1.2%) |200
3 Mid-span | 8 kg (1.6%) | 200 4 Mid-span | 10kg (2%) | 200

testing time series is 4:1. In general, these parameters need to be set very carefully. The
amount and quality of data, as well as the choice of parameters can significantly affect
the performance of GANS, but this is somewhat beyond the scope of this article.

The training history in Fig. 5 shows a consistent decline in all loss components, indi-
cating successful model convergence. The autoencoder loss rapidly decreases, demon-
strating effective latent representation learning. The generator loss drops significantly
in the early stages, stabilizing later; the discriminator loss follows a similar pattern,
reflecting the adversarial balance between generator and discriminator. The physics loss
steadily decreases throughout the training, highlighting the model’s success in generating
data that adheres to physical constraints.

Autoencoder Loss

Generator Loss

0 200

400 600

800

Discriminator Loss

3.0+
25-

20-

05-

00+, .
0 200

400 600 800

Fig. 5. Training history.

164
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Physics Loss
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The results in Fig. 6 compare the actual data with the outputs of TimeGAN and
PyTiGAN. It can be found that the PyTiGAN generated data follows the actual patterns
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more closely, successfully capturing the characteristics associated with the VBI process.
In contrast, TimeGAN produces less structured and more inconsistent results, failing to
replicate the characteristic temporal patterns. This comparison highlights PyTiGAN’s
performance in preserving the dynamic behavior of the system.

Some might argue that the observed differences are primarily due to suboptimal
parameter tuning, which is indeed a crucial aspect of GAN training. However, these
results demonstrate that PyTiGAN can guide the generated responses closer to actual
physical behavior to some extent, even without meticulously optimized parameters. A
more detailed comparison under optimized settings is left for future research (due to
space constraints in this paper).

Actual

Acceleration (m/s?)
|
TimeGAN

~ n
U IS RN o RN A TS o e N N b N e g R e

PyTiGAN

T\m;(ms)

Fig. 6. Result comparison.

Figure 7 presents the distribution of original and synthetic data using PCA [18] and
t-SNE [19] visualizations. In the visualizations, the synthetic data (orange) has similar
patterns to the original data (blue) but does not completely overlap (especially in s-SNE).
This indicates that the generated samples successfully capture the overall distribution
of the training set while retaining sufficient diversity, which is essential for the model’s
generalization capability.

A linear SVM with a regularization parameter of C = 1.0 is employed to perform
binary classification between healthy and damaged states. The model’s performance
across the four damage cases is presented in Table 2. Conservatively, we deliberately
limit the amount of synthetic data to not exceed the original data. PyTiGAN achieves the
highest accuracy in all cases, with improvements ranging from 1.0% to 2.7% over the
baseline. While GAN and TimeGAN exhibit decreased accuracy, this can be attributed to
insufficient parameter adjustment, as discussed above. GANs are typically challenging
to train, but in any case, the introduction of PyTiGAN improves the generalizability of
GANSs from this perspective.
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PCA Results t-SNE Results

Original o Original
Synthetic B S Synthetic

Component 2
Component 2

-10

-4 -20 G o
-6 4
-30
-10 -5 0 5 10 -30 —Z'U -10 0 10 20 30
Component 1 Component 1
Fig. 7. PCA and t-SNE visualizations.
Table 2. Model performance.
Method Case 1 (0.8%) Case 2 (1.2%) Case 3 (1.6%) Case 4 (2.0%)
Original 76.3% 81.3% 85.0% 90.0%
GAN 73.0% 79.0% 82.0% 85.0%
TimeGAN 75.0% 80.0% 83.0% 87.0%
PyTiGAN 79.0 % 83.0% 86.0% 92.0%

4 Conclusion

In this paper, a physics-guided TimeGAN (PyTiGAN) for time-series data generation in
SHM applications is introduced. By integrating physical constraints into the TimeGAN
architecture, the proposed model can generate statistically consistent and physically
meaningful data, as validated through experiments on the VBI data. Based on the results,
the following conclusions can be drawn:

(1) The addition of physics loss terms effectively guides TimeGAN to generate phys-
ically consistent data without requiring stringent parameter tuning or complex
training.

(2) Compared to TimeGAN, PyTiGAN generates synthetic data that aligns visually
with the original time-domain data, as demonstrated through PCA and t-SNE
visualizations, while maintaining sufficient diversity.

(3) The inclusion of PyTiGAN-generated data enhances the damage detection accuracy
of machine learning models, emphasizing its usefulness in SHM applications.

Future research will discuss the impact of hyper-parameters on PyTiGAN’s
performance and explore its effectiveness across diverse datasets.
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