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Abstract
Bridge damage detection using vibration data has been confirmed as a promising approach. Compared to the traditional
method that typically needs to install sensors or systems directly on bridges, the drive-by bridge damage detection
method has gained increasing attention worldwide since it just needs one or a few sensors instrumented on the passing
vehicle. Bridge frequencies extracted from the vehicle’s vibrations can be good references for damage detection.
However, extant literature considered mainly low-frequency responses of the vehicle, while the high-frequency
responses that also contained the bridge’s damage information were often ignored. To fill this gap, this paper developed
a damage detection approach that utilized both low and high-frequency responses of the passing vehicle. Mel-frequency
cepstral coefficients (MFCCs) and support vector machine (SVM) were employed to classify damage severity. Firstly, the
vehicle’s frequency responses are utilized as input features to train SVM models to identify the bridge’s condition. Then,
to reduce dimensions of inputs and improve training efficiency, frequency responses are projected from the Hertz scale
into the Mel scale, and two means using MFCCs are used to feed different SVM models. A laboratory experiment with a
U-shaped continuous beam and a model car was used to verify the effectiveness of the proposed method. Results
showed that high-frequency responses contain much information about the bridge’s conditions, and using MFCCs could
apparently improve computational efficiency. The errors of damage detection when a heavy car was employed were
within 5%.
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Introduction

Bridges are essential components connecting transport
networks all over the world. Aging, deterioration, and
failure of bridges can pose threats to human lives.
According to the infrastructure report in the U.S. in
2021, around 42% of bridges in the U.S. are over 50
years old.1 Structural health monitoring (SHM) is
increasingly essential since it can provide the bridge’s
safety assessment and predict its remaining life.2 As a
principal branch of SHM, damage detection has gained
much attention in the last decades. Traditionally, dam-
age detection is on the basis of visual inspection by
qualified engineers.3 However, with the fact that
bridges’ span, complexity, and height are greatly
increasing, visual monitoring becomes time-consuming,
dangerous, and even unachievable. Using vibration

data of bridges is confirmed as a promising way to
solve this problem.4–6 The bridge’s dynamic character-
istics before and after damage are good references for
damage detection.

Conventionally, sensors are attached directly to the
bridge to collect its vibration data to extract the
bridge’s dynamic properties. A monitoring system may
be installed and maintained for the bridge in the long
run,7 and typically, one system can perform well for
one unique bridge. Even though the direct method can
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accurately record the bridge’s vibration data and per-
form analysis in real time, it is challenged by high
deployment costs, hostile field environment, battery
capability, etc. Besides, after sea-like data are obtained,
most of them are saved and cannot be effectively used.
Due to the above reasons, only gigantic and crucial
bridges are equipped with these monitoring systems.
However, a large part of bridges worldwide are short
and mid-span bridges, which are not appropriately
monitored.

To solve this problem, the drive-by damage detec-
tion method was proposed. This method was firstly
proposed by Yang et al.8 in 2004, and the authors suc-
cessfully extracted the bridge’s fundamental frequency
using the passing vehicle’s vibration data. Later, the
proposed method was confirmed by Lin and Yang9 in
a field test. A salient advantage of this method is that it
just needs one or a few sensors installed on the passing
vehicle; thus, it is economical and easy-to-operate.
Besides, the vehicle itself can play the exciter and sensor
roles, so no particular excitation is needed. The poten-
tial of the drive-by method ensured that the passing
vehicle’s vibration data contained the bridge’s critical
dynamic characteristics and could be used as references
to monitor its health conditions.

As one of the essential properties of bridge struc-
tures, the frequency was commonly researched using
the drive-by vehicle’s vibration data. Many scholars
have been contributing to extracting bridge’s natural
frequencies to estimate the bridge’s states. To increase
the precision of frequency extraction, Yang and
Chang10 found that by decreasing the amplitude ratios
between the vehicle and bridge’s acceleration ampli-
tudes, the probability of successfully extracting the
bridge’s frequencies from the vehicle’s vibration data
could be increased. The first two natural frequencies of
the bridge were successfully obtained. To extract high
modes, empirical mode decomposition was used to pre-
process the vehicle’s time-domain accelerations into
intrinsic mode functions (IMFs). It was found that
using IMFs could significantly improve the visibility of
the bridge’s frequency.11–13 On the other hand, it is
worth noting that the frequency of the bridge is a com-
prehensive dynamic parameter; thus the extracted natu-
ral frequencies may not be sensitive indicators for
damage detection. Local damage may not be able to
induce a significant change in the bridge’s natural fre-
quencies.14 Therefore, frequencies may not be ideal
indicators for bridge damage detection. As a result,
researchers began to focus on the Frequency Response
Function curve of the passing vehicle rather than just
peaks in the frequency spectrum. Cerda et al.15 tried to
detect changes in the bridge using the vehicle’s fre-
quency responses. Four different masses were added to
the bridge, and five different car speeds were used.

Employing Short Time Fourier Transform (STFT), the
acceleration was transformed from time domain to fre-
quency domain. Then, correlation coefficients between
averaged health and damaged spectrum were used to
identify the damage. Compared to the direct method
with sensors installed on the bridge, the indirect moni-
toring results could reach an acceptable level. However,
the vehicle’s frequency responses generally contain
many components that may cover changes induced by
the bridge’s health conditions. One of them is the influ-
ence of road roughness. Different passing road rough-
ness can induce changes in the vehicle’s frequency
spectrum. To this end, Nagayama et al.16 utilized two
connected passing vehicles to eliminate the effect of
road roughness. Both numerical simulations of a 59 m
long box-girder bridge and field tests showed that the
bridge’s frequency could be identified accurately, and
the influence of road roughness could be removed.
Wang et al.17 proposed to utilize the vehicle’s front and
rear axles responses to eliminate the influence of rough-
ness, so the input in the vehicle’s responses just con-
tained the bridge’s vibration. Therefore, the bridge’s
frequency-domain responses could be obtained clearly.
Another influence comes from the vehicle itself. Since
sensors are installed on the vehicle, its frequency would
predominate in the frequency domain. If the vehicle’s
frequency can be invisible in frequency responses, it
would be easier to identify the bridge’s conditions
according to its frequency domain responses. Yang
et al.18 suggested that a filter could be used to eliminate
the vehicle’s frequency in its frequency spectrum. Two
numerical examples verified the effectiveness of the
proposed filtering method. Later, Yang et al.19 pro-
posed using contact-point (CP) response rather than
the vehicle’s vibration data. The CP responses can out-
perform the vehicle’s response because the vehicle’s fre-
quency will disappear in the frequency spectrum, but
the bridge’s frequency responses remain. Bridge fre-
quency response extraction using the CP response was
proved robust under the influence of existing traffic
and road roughness. However, in existing literature,
only low-frequency responses are concerned because
high-frequency responses are easily contaminated by
noises. On the other hand, as sensors are installed on
the passing vehicle, most high-frequency responses are
related to the vehicle’s properties rather than the
bridge. These two reasons make the exploration of
high-frequency responses difficult. Still, high-frequency
responses of the passing vehicle contain the bridge’s
damage information as well and thus have the potential
for damage detection.

Due to the rapid development of computer hard-
ware, machine learning (ML) techniques have been gra-
dually employed in the last decade. It has been utilized
in frame and truss structures,20 turbine damage
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detection,21 direct bridge monitoring,22 dam safety
monitoring,23 etc. In recent years, researchers started to
use ML in drive-by bridge damage detection. Liu
et al.24 proposed that full-bandwidth frequency
responses should be utilized because high-frequency
responses can contain the bridge’s damage information.
The authors employed stacked autoencoders to achieve
dimension reduction, then a semi-supervised model was
trained to identify damage in bridges. The test results
showed that damage detection precision could reach
15 g (different masses were added to the bridge to
simulate damages). Malekjafarian et al.25 utilized an
artificial neural network (ANN) to project frequencies
and the vehicle’s speed into its frequency responses. An
ANN model was trained using healthy cases, and then
the same model was used for damage cases. The dam-
age severity was indicated by comparing the difference
between predicted and true frequency responses.
Sarwar and Cantero26 considered several vehicles pass-
ing the bridge at the same time, and a deep autoencoder
(DAE) model was set up for training. When the bridge
was healthy, thousands of passing vehicles’ vibration
data were used to train the DAE model. Then, the
trained DAE was used to encode and decode vibration
data of unknown cases. The mean absolute error
between the vehicle’s vibration and predicted data was
utilized as damage indicators. The numerical simula-
tion showed that the DAE could accurately identify the
bridge’s damage. Locke et al.27 proposed to consider
the environmental effects on drive-by health monitor-
ing. The vehicle’s frequency-domain responses were
used to train modified VGG1928 neural networks
(NN). Considering vehicle traffics, surface roughness,
and temperature, the numerical examples showed that
the NN model could learn the bridge’s damaged state
from the passing vehicle’s vibration data and, to some
degree, eliminate environmental noises. Corbally and
Malekjafarian29 proposed to utilize frequency-domain
CP responses as the ANN’s input, and the influence of
temperature was considered in long-term monitoring
progress. An ANN model was trained to identify the
impact of temperature and detect bridge damage.
Results showed that using the CP responses outper-
formed traditional accelerations of the passing vehicle
and was robust under the influence of different vehicle
speeds and road roughness. However, in the previous
work, the calculation process, either very complex or
with no high-frequency responses, was utilized, making
the damage detection process challenging to apply in
practical engineering.

In this paper, an approach to identify bridge dam-
age utilizing the passing vehicle’s low- and high-
frequency responses is proposed. Different vehicle
speeds (between 0.7 and 1.1 m/s) and weights (normal

and heavy) are considered. The idea is explored using a
steel bridge and a model car in the lab. Two sensors
are installed on the front and rear axles of the vehicle
to collect its vibration data. Then, the vehicle’s
frequency-domain responses are used to train an sup-
port vector machine (SVM) model to classify whether
the bridge is damaged or not. To improve the damage
detection efficiency and precision, Hertz scale frequen-
cies are transformed into Mel scale, and then Mel-fre-
quency cepstral coefficients (MFCCs) are extracted as
input features. MFCCs are originally from acoustic
recognition, and they are used to extract features of
sounds. Recently, it has been found that MFCCs can
be used in SHM, and good results have been obtained
on pipeline anomaly detection,30 bridge decks monitor-
ing,31 and bolt looseness detection,32 etc. However, the
combination of MFCCs and ML techniques are rarely
used in indirect bridge health monitoring to the
author’s best understanding. The remainder of this
paper is organized as follows: Section ‘‘MFCCs and
SVM based methodology’’ introduces the principles and
process of applying MFCCs and SVM to drive-by
damage detection. Section ‘‘Lab-scale experiments’’
explains the setup for the laboratory experiments.
Section ‘‘Experimental results and discussions’’ discusses
the hyperparameter selection of calculating MFCCs
and building SVM models and discusses the results of
bridge damage detection. Section ‘‘Conclusions and
future work’’ provides conclusions and future work for
this paper.

MFCCs and SVM-based methodology

Mel-frequency cepstral coefficients

MFCC is a particular cepstrum that has been proved
as an effective method in acoustic feature identification.
It is designed to present the results of a cosine trans-
form of the real logarithm of the short-term energy
spectrum on a Mel-frequency scale. MFCCs are
expected to focus on a range of frequency responses,
compared to Hertz-frequency in which only high
amplitudes will be considered. Owing to this, MFCCs
can be used to reduce the dimensions of frequency-
domain responses. Besides, different from traditional
cepstrum that treats frequency range the same, MFCCs
focus more on low frequencies but do not ignore high
frequencies completely, so they still can consider all fre-
quencies. Originally, MFCCs are designed to simulate
how people can hear sounds (human beings’ auditory
system is linear under 1 kHz but logarithmic over
1 kHz).33 MFCCs utilize these characteristics to ana-
lyze signals when processing sounds and can success-
fully extract features of the input acoustic signals. The
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original mutual transitions between Hertz and Mel fre-
quency scale are presented in Equation (1).

fm = 2595 log10 1 +
fh

700

� �
ð1Þ

where fm represents Mel scale frequencies, and fh repre-
sents Hertz scale frequencies. However, the bridge’s
‘‘auditory system’’ is not the same as the human being,
so the relationship in Equation (1) must be modified
before applying to bridge damage detection. In general,
the first three natural frequencies of bridges are within
the range of 0–100 Hz. The coefficients in Equation (1)
can be updated to Equation (2) to suit bridge health
monitoring.34 The updated equations can project Hertz
scale frequency ranges into Mel scale frequency ranges
as shown in Figure 1.

fm = 5 ln 1 +
fh

5

� �
ð2Þ

In the process of extracting MFCCs from accelera-
tion signals of the passing vehicle, five steps are
involved: (1) Data preprocessing; (2) Fast Fourier
Transform (FFT); (3) Mel Filter bank; (4) Logarithm;
(5) Discrete Cosine Transform (DCT). The order of
data processing is shown in Figure 2, which is intro-
duced below.

Data preprocessing. Before transforming the vehicle’s
acceleration signals into the frequency domain, they
need to be preprocessed. Since the vehicle’s front axle
will firstly be driven to the bridge and then the rear axle
(there may be multiple axles), the time when the front
tires enter the bridge is set as tf, in and the time when it
leaves the bridge is set as tf, out. If the rear tire enters the

bridge at tr, in and leaves at tr, out, the vehicle’s passing
period tp can be represented as Equation (3).

tp = tf, out � tr, in ð3Þ

Then acceleration signals within tp are divided into
N(N = 1, 2, 3, :::) different frames. N = 1 means that all
signals are projected to the Mel scale. When N.1,
whole signals will be divided into N frames. These
frames are sequentially connected, and they can have
some overlapping areas to enhance the robustness of
feature extraction. It is worth noting that in acoustic
recognition, after sound signals are divided, a high-
pass filter is typically needed to filter noises with low
frequencies.35 However, in bridge damage detection,
the bridge’s first three-order natural frequencies are
generally low (0–100 Hz), and the most essential infor-
mation is included in these frequencies. Therefore, in
this paper, the high-pass filter is not used.

Because the signal is divided into different frames
directly, spectrum leakage may occur due to signal
truncation. A promising way to solve this problem is
to add windows to divided signals. General windows

Figure 1. Relationship between Hertz and Mel frequency scale
(0–800 Hz).

Figure 2. Five steps to extract MFCCs from original
acceleration signals.
MFCC: Mel-frequency cepstral coefficient.
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include rectangular window, Hann window,
Hamming window, Flat top window, etc. Since the
amplitudes of the passing vehicle’s vibration signal
do not vary very much, the Hann window is selected
in this paper.

Fast Fourier transform. Fast Fourier transform (FFT) is
quite commonly used in signal processing for SHM. It
can transform signals from the time domain to fre-
quency domain for further analysis, but it cannot repre-
sent time sequence information for signals. The STFT
can be utilized to solve this problem. That is to divide
the signal into several sections in time sequences, and
for each sequence, FFT is performed. Since the accel-
eration signals are divided into several frames, STFT is
adopted in this paper. Furthermore, the energy of sig-
nals can be obtained from their frequency-domain
responses. A general way to calculate the energy spec-
trum is to calculate the square of frequency-domain
responses, which is employed in this paper.

Mel Filter bank, logarithm, and discrete Cosine transform. For
each energy spectrum, Equation (2) is used to project it
into the Mel frequency scale. In the Mel frequency
scale, linear frequency ranges (increasing in the Hertz
frequency scale) are selected. Then the energy spectrum
in the Hertz scale is convolved with Mel filter banks.
For example, if 0–800 Hz in Hertz scale is divided into
15 filter banks evenly or unevenly in Mel scale using
Equation (2), the results can be found in Appendix.
After that, a logarithm and a Discrete Cosine
Transform (DCT) are applied for each bank to obtain
the final MFCCs.

The above five steps can be represented in Equation (4)

M
j
i = D( ln (Mel( F (si)j j2) + E)),

i = 1, 2, 3, . . . ,N ; j = 1, 2, 3, . . . ,P
ð4Þ

where M
j
i represents the MFCC of the i-th frame’s j-th

cepstral coefficient. E is a constant that is needed in
acoustic recolonization. It is quite useful when the
value in ln ( � ) can be negative. However, for the
energy spectrum of passing vehicle’s signals, the values
are always greater than zero, so E is not needed in
Equation (4), namely E = 0. si is the i-th acceleration
signal after the whole signal is divided into N frames.
F means the FFT. Mel represents to multiply the
Hertz scale energy with each Mel filter bank. D means
DCT, and in this paper, DCT-II is adopted as shown
in Equation (5), where x and X values mean values

before and after DCT, respectively. x= x1, x2, :::, xP½ �
and X = X1,X2, :::,XP½ � have the same dimensions.

Xk =
XP�1

p = 0

xp + 1 cos
p

P
p +

1

2

� �
(k � 1)

� �
, k = 1, . . . ,P

ð5Þ

In acoustic recognition, the first MFCC is usually
dropped because it is very sensitive to the amplitudes
of signals. However, in the ML process, the machine
can automatically learn whether the first coefficient will
play a role or not. Therefore, all MFCCs are selected
in the later sections for bridge damage detection.

Support vector machine

SVM is a vital algorithm in ML and has interested
many researchers in SHM36–38 owing to its good per-
formance in classification problems and its explainable
characteristics. SVM has been successfully employed to
traditionally direct SHM, but few studies have been
done to detect bridge damage using drive-by vibration
data. The principles of SVM employed in indirect
bridge damage detection will be introduced in this
section.

The basic idea of SVM is to maximize the margin
between two classes using a hyperplane shown in
Figure 3. If the datasets own m samples presented by
f(xi, yi), i = 1, 2, 3, . . . ,m; yi 2 f1, � 1gg, the opti-
mal hyperplane will be

w � xi + b = 0 ð6Þ

where w is weights, xi means all data points on the
optimal hyperplane, and b is the bias. The maximum
margin is determined with a maximum d as shown in

Figure 3. Basic principles of SVM.
SVM: support vector machine.
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Figure 3. To maximize d, it is to minimize the objective
function Equation (7)

f (w) =
2

d2
=
kwk2

2
,

s:t: yi(w � xi + b) ø 1, i = 1, 2, 3, . . . ,m

ð7Þ

To seek for the minimum of Equation (7), its dual
problem is considered. A confirmed method to solve
this optimization problem is called the standard
Lagrange multiplier method as introduced in Equation
(8), which includes two parts: the original problem and
the inequation constraint. By introducing the Lagrange
dual function (Equation (9)) that only consists of ai

when the original Lagrange function meets the Karush-
Kuhn-Tucker (KKT) optimality conditions, the opti-
mization problem can be solved. It is found that all
support vectors can meet the KKT optimality condi-
tions. w, b, and linear decision function can be obtained
as shown in Equations (10) and (11).

L(w, b,a) =
1

2
kwk2 �

Xm

i = 1

ai yi w � xi + bð Þ � 1ð Þ ai ø 0ð Þ

ð8Þ

Ld =
Xm

i = 1

ai �
1

2

Xm

i, j = 1

aiajyiyjxi � xj ð9Þ

w=
Xm

i = 1

aiyi; b = yi � w � xi ð10Þ

f (xtest) = sign w � xtest + bð Þ

= sign
Xm

i = 1

aiyixi � xtest + b

 !
ð11Þ

where xtest means any test samples, and sign(�) is the
sign function. When the input is greater than 0, it
returns 1, otherwise it returns 21.

When the data cannot be separated perfectly by a
linear hyperplane, the margin needs to be adjusted.
Thus, zi and the penalty parameter C are introduced to

optimize the original constraint conditions. The
updated constraint is shown in Equation (12)

f (w, zi) =
kwk2

2
+ C

Xm

i = 1

zi,

s:t: w � xi + b ø 1� zi; zi ø 0, i = 1, 2, 3, :::,m:

ð12Þ

where C is used to control how much the objective
function needs to be penalized. When C is huge, SVM
does not allow errors in classification problems so that
the margin will be smaller (hard margin); instead, if C
is small, some classification errors can be acceptable
and the margin can be bigger (soft margin).

For nonlinear classification problems, data need to
be mapped from the original space x to a new high-
dimension space F(x), where F is a mapping function.
The decision function is shown in Equation (13).
However, the mapping function is usually unknown,
and even if it is known, calculating F(xi) �F(xtest)
would be computationally expensive. A solution for
this is to use Kernel functions K as introduced in
Equation (13). Common Kernel functions in SVM are
listed in Table 1. C, g, r, d are hyperparameters that
need to be set before applying SVM.

f (xtest) = sign
Xm

i = 1

aiyiF(xi) �F(xtest) + b

 !

= sign
Xm

i = 1

aiyiK(xi, xtest) + b

 ! ð13Þ

Damage detection

This section will discuss the bridge’s damage detection
using the proposed method. The proposed idea in this
paper is a baseline-based method, which requires that
the bridge is healthy at the beginning when the passing
vehicle’s vibrations are recorded. At this stage, a large
number of runs (named ‘‘healthy’’ runs) are needed to
suppress the random influence of different factors,
such as environmental noises. Then, new runs (named
‘‘unknown’’ runs) will be collected regularly by the

Table 1. Kernel functions and parameters.

Kernel Expressive formulas Parameters

Linear K(x, y) = xTy = x � y C
Polynomial K(x, y) = (g(x � y) + r)d C, g, r, d
Sigmoid Kernel function K(x, y) = tanh (g(x � y) + r) C, g, r
Radial basis function (RBF) K(x, y) = e�gkx�yk2

C, g

Li et al. 3307



vehicle to check the bridge’s healthy state. Then, the
same number of runs from ‘‘healthy’’ and ‘‘unknown’’
runs will be utilized to train the SVM model. If the
SVM model employing MFCCs can classify the
‘‘healthy’’ and ‘‘unknown’’ runs with high accuracy,
the bridge is regarded as damaged. However, if the
SVM cannot be trained well and the accuracy is very
low (nearly 0.5), we will understand that the bridge
maintains its healthy state.

Lab-scale experiments

Experimental setup

In this section, lab experiments are performed to verify
the proposed idea. A continuous UPE300 beam made
of Q355 steel is utilized in the experiment. The beam’s
flange thickness is 15 mm, and the web thickness is

9.5 mm. Its width is 100 mm and the height is 300 mm
(shown in Figure 4(a)). The beam is rotated anticlock-
wise at 90� to simulate the field bridge. The total length
of the bridge is 6.0 m. There are two spans, and each
one is 2.85 m. The support length is 0.15 m at each
end (see Figure 4(a)). The total mass of the bridge is
248.64 kg. A Tamiya model car driven by a remote-
control unit (see Figure 4(b) and (c)) is utilized to simu-
late the real car on bridges. Besides, two guide cables
are utilized to drive the car straightaway. Note that
guide cables will not constrain the car’s vertical vibra-
tion, and because the cables are not very tight, the car’s
passing tracks on the bridge are different. The car has
its suspension system, connection shaft, rubber tires,
etc. Its self-weight is 4.305 kg (normal car). The front
axle’s weight is 2.102 kg, and the rear one is 2.203 kg.
In the experiment, 5.157 kg of extra mass is also added
to the car so that its weight becomes 9.462 kg (heavy

Figure 4. Experimental setup: (a) continuous beam, (b) model car, and (c) remote-control unit.
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car), with the front axle’s weight of 4.315 kg and the
rear axle’s weight of 5.147 kg. In the later analysis, the
heavy car is selected for analysis at first. Two acceler-
ometers, type 4371 made by Brüel and Kjær, are
installed on the car’s front and rear axles (see Figure
5(a)) to collect acceleration data. Several acceler-
ometers are also attached to the bridge’s bottom to
compare with the traditional direct bridge damage
detection method (see Figure 5(b)). Because this paper
aims to also analyze high-frequency responses, the
sampling frequency is set as 10 kHz. Other devices
include: a laptop to save data, the I/O device, and sig-
nal amplifier sets. The experiment is performed in the
structural laboratory at Aalto University with normal
environmental noises.

The car is driven using the remote-control unit.
Before the vehicle enters the bridge, there is an accel-
eration zone where the vehicle can accelerate from a
static state to the highest speed. Similarly, the decelera-
tion zone is set at the end of the bridge, so the car can
decelerate after passing the bridge. Both the accelera-
tion and deceleration zones are made of wood. As
mentioned before, acceleration data are utilized for
analysis only when both the front and rear wheels are
on the bridge. In this way, all data are collected when
the car is at its highest speed. However, as the capabil-
ity of different batteries is different and a battery’s per-
formance decreases if it is used for a long time, the
highest speeds of various passages are different. It is to
simulate that in practical engineering, a car’s passing
speeds are different as well. In this experiment, there
are 796 heavy car runs in total. The speed’s histogram
and cumulative distribution are shown in Figure 6. It
can be seen that the car’s speed is approximately sub-
ject to Normal distribution. Fitting a Normal distribu-
tion, car speed’s fitted probability density function,
and cumulative distribution function are shown in
Figure 6. The mean value and variance are 0.908 m/s
and 0.048, respectively.

Bridge’s damage

The bridge’s damage can typically induce the deduction
of its stiffness. In the frequency domain, it was found
that real damages can induce changes in the bridge’s
frequency responses.39 Similar effects can be made by
adding masses to the structure. The effectiveness of this
method has been verified by several studies, such as
references.24,40–42 In this experiment, different addi-
tional masses are employed to simulate different dam-
age cases. The mass is added to the middle of each
span. There are seven cases in total: 0 (intact), 5, 10, 15,
20, 25, 30 kg. For example, the case of adding 5 kg to
the bridge can be seen in Figure 5(b). The beam with

no extra mass is considered intact. Two hooks are used
to add the mass to the bridge, and each hook’s mass is
2.0 kg. The damage degree is represented by the per-
cent of added masses out of the bridge’s mass. All seven
cases are summarized in Table 2.

Data training and testing

In this paper, scikit-learn package43 is utilized to per-
form classification using SVM. Two different features,
including frequency responses and MFCCs, are used.
The performances of using raw frequency responses

Figure 5. Accelerometers and additional mass: (a) sensors
installed on the car and (b) additional mass to the bridge (5 kg).

Figure 6. Car’s speed distribution.
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and MFCCs with even or uneven bank filters are com-
pared. The features with better performance are
selected for further analysis. For each training and test-
ing, a 5-folder cross-validation (CV) strategy is used to
avoid the occasionality of grouping data. That means
4/5 of the samples are used for training, and the rest of
the samples are used for testing. This process will be
done five times. Then, the mean test accuracy is
recorded for analysis. When the SVM is utilized for the
binary classification problem, the same number of runs
from the intact case (case 0) and damaged cases (cases
1–6) will be selected for training and testing. Take case
1 as an example. Since there are 49 runs of it, 49 sam-
ples are randomly selected from 506 samples of case 0.
In this circumstance, if the testing accuracy is around
0.5, it means that the SVM cannot classify these two
classes because even though the SVM labels all samples
as intact or damaged, the accuracy can still reach 0.5.
The above random selection process will be performed
10 times for each training and testing. For the multi-
class classification problem, 50 runs are randomly
selected from all 506 runs in case 0. Other sample selec-
tion processes will be the same as binary classification.

Experimental results and discussions

Low frequency response analysis

In the experiment, vibrations of both the car’s front
and rear axles are recorded. But because they do not
have an apparent difference, only the rear axle’s vibra-
tion is utilized in the following analysis. Two examples
of time-domain vibration data in case 0 and case 1 are
shown in Figure 7(a).

It can be seen from Figure 7(a) that the time-domain
signals are nearly the same in both intact and damaged
scenarios. Therefore, it is necessary to find suitable fea-
tures to determine whether the bridge is damaged or
not. Since the vibration data of passing vehicles contain
the bridge’s dynamic properties, the analysis of the
frequency-domain responses may provide important
information about the bridge’s damage. Employing
FFT, the time-domain signals are transformed into the

frequency domain. For frequency-domain analysis, the
averaged frequency responses of case 0 and case 1 are
used so as to eliminate the influence of noise as much
as possible. As high-frequency responses typically
include noisy frequencies and cannot be recognized by
eyes, only 0–50 Hz frequency responses are shown in
Figure 7(b). To analyze the beam’s natural frequency
in the vehicle’s frequency domain, the two-span contin-
uous beam’s finite element (FE) model is built using
beam element in MATLAB as shown in Figure 8. The
basic parameters of the FE model can be found in
Table 3. The FE model has 40 elements and 41 nodes,

Table 2. Damage cases.

Cases Added
mass (kg)

Damage
degree (%)

Heavy
car runs

Normal
car runs

Case 0 0 0.00 506 565
Case 1 5 5.63 49 56
Case 2 10 9.65 50 57
Case 3 15 13.67 42 56
Case 4 20 17.70 51 57
Case 5 25 21.72 51 56
Case 6 30 25.74 47 57

Figure 7. Responses of indirect and direct methods: (a) time-
domain responses of intact and damaged cases, (b) frequency-
domain responses for intact and damaged cases, and (c) Bridge’s
frequency responses (direct method).
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and each node has three degrees of freedom: x-transla-
tion, y-translation and rotation u in the XY plane.
Employing the model’s stiffness and mass matrices, the
beam’s first natural frequency is obtained as 30.809 Hz
and it is plotted in Figure 7(b) and (c).

It can be seen from Figure 7(b) that for case 0, the
bridge’s first-order natural frequency can be identified
if it is known beforehand, but the amplitude around
30.809 Hz is pretty weak. Because of the existence of
environmental noises, engine noises, and the vehicle’s
dynamic parameters, it is hard to extract the bridge’s
first-order frequency directly. It can be seen that the
vehicle’s frequency-domain responses of passing intact
and damaged bridges do not have much difference. In
addition, the two cases’ highest amplitudes are differ-
ent as well, so it is unknown whether the highest ampli-
tudes are the vehicle’s frequency or the bridge’s first
order frequency. Therefore, it is difficult to determine
whether the bridge is damaged or not from the car’s
frequency-domain responses directly.

For comparison, data of the traditional direct
method (sensors on the bridge) are plotted as shown in
Figure 7(c). The difference between the measured and
the simulation results can be caused by the assumptions
of various data such as damping ratio, material den-
sity, Young’s modulus, etc. Frequency-domain analysis
of the bridge’s vibration shows that its first-order natu-
ral frequency decreases because of the additional mass,
but the vehicle’s frequency remains the same no matter
if the mass is added or not. This change cannot be iden-
tified from the vehicle’s frequency response. Other
methods are expected to be used to find the difference
between intact and damaged cases using the passing
vehicle’s vibration.

SVM using frequency responses

As aforementioned, it is generally hard to determine
the health condition of the bridge by using only low-
frequency responses. This section utilizes both low-
and high-frequency responses to determine the bridge’s
state. Since the frequency spectrum is symmetrical, half
of the spectrum is selected for analysis. In this experi-
ment, it means 0–5000 Hz, and the frequency resolu-
tion is 0.0763 Hz. There are 65,537 frequency response
points in total, and all these points are utilized as
features to train SVM models. Initially, for SVM
models, all hyperparameters are set as constant values:
C = 1:0, g = 0:01, r = 0:0, d = 3 to compare the influ-
ence of selecting different ranges of frequencies. Cases
0 and case 2 are utilized in this section.

Before training the SVM model, a common way to
improve the accuracy is to normalize all features. The
Kernel calculation, especially linear and Polynomial
Kernel, will be quite slow when all features have their
units. Occasionally, Radial basis function (RBF) and
Sigmoid Kernel may not be able to address non-
normalized data. Normalizing all features can greatly
improve computational efficiency. General normaliza-
tion methods include StandardScaler and
MinMaxScaler. StandardScaler can make all feature
data normally distributed, and it can be calculated by
Equation (14), where xj means the j-th feature data
vector. m is the mean value, and s is the standard
deviation. MinMaxScaler is presented by Equation
(15). However, MinMaxScaler is very sensitive to out-
liers and may cause non-ideal results. Therefore,
StandardScaler is selected in this study.

xj
s =

xj � m(xj)

s(xj)
ð14Þ

xj
s =

xj �min (xj)

max (xj)�min (xj)
ð15Þ

By employing StandardScaler and inputting fre-
quency responses of samples in a specific range into
SVM models, we can get an accuracy using the
responses in the selected frequency range for testing
samples (introduced in Section ‘‘Data training and test-
ing’’). When the responses in different frequency ranges

Figure 8. FE model of the continuous beam.
FE: finite element.

Table 3. Basic parameters of the beam’s FE model.

Parameters Value Parameters Value

Flange’s thickness 15 mm Density 7850 kg/m3

Web’s thickness 9.5 mm Young’s modulus 210 Gpa
Beam’s length 6.0 m Poisson’s ratio 0.3
Support length 0.15 m

FE: finite element.
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are utilized, different accuracy will be obtained
accordingly.

Figure 9(a) plots the change of accuracies when the
selected range increases from 0–0.0763 to 0–1500 Hz.
It can be seen that with the increase in the selected fre-
quency range, the test accuracy of Linear and Sigmoid
Kernel is increasing. Rather, when Polynomial and
RBF Kernels are employed, the test accuracy is poor.
The main reason for this phenomenon is the high sensi-
tivity property of the latter two Kernels to their hyper-
parameters. Those hyperparameters must be
systematically modified to improve their performance.
Further Kernel selection will be discussed in Section
‘‘Selection of filter banks’ number and SVM Kernel.’’
For the Linear Kernel, we can see that when the
selected frequency range increases to 0–300 Hz, the test
accuracy is much better than the scenario when only
frequency responses in 0–60 Hz are employed. When
the growth of the utilized frequency range continues
further to 0–750 Hz, the test accuracy tends to be sta-
ble (accuracies when the frequency range increases
beyond 0–1500 Hz are not plotted because they have
been relatively stable). Therefore, high-frequency
responses of the vehicle can also contribute to damage
detection for the bridge. In practical engineering, com-
pared with the beam employed in this experiment, a
real bridge’s natural frequencies are typically smaller.17

Thus, the frequency range of 0–750 Hz used in the
experiment will also be applicable for a real bridge.
However, the natural frequencies of different bridges
can vary significantly. To ensure good results, the
authors recommend selecting 0–1000 Hz frequency
responses for a practical application.

To investigate the distribution of bridge damage
information in the high-frequency range, we tried to
make classifications using just newly added short-range
frequency responses. The frequency interval is selected
as 7.63 Hz (100 frequency response points). In previ-
ous analysis, we utilize the increasing range, for exam-
ple, 0–7.63, 0–15.26, 0–22.89 Hz, etc. Now, just newly
added frequency ranges, such as 0–7.63, 7.63–15.26,
15.26–22.89 Hz, etc., will be employed for damage
classification using the Linear SVM model. The classi-
fication results of 10 times random selection from case
0 (506 runs in total) are shown in Figure 9(b).

From Figure 9(b), we can see that, compared to
Figure 9(a), the maximum accuracy decreases to 0.91
because just a few frequency responses are selected for
classification. Once the bridge damage information is
contained in that frequency interval, the damage detec-
tion accuracy will be relatively high (peaks), as seen in
Figure 9(b). We can find that damage features are rela-
tively dense in the range of 0–750 Hz. Also, it can also
be noticed that damage features are distributed around
1300 Hz (obvious peaks) and 2400 Hz (weak peaks).

After that, the accuracy is near 0.5, meaning that the
SVM model cannot identify the bridge’s damage. Thus,
the bridge’s damage features are densely distributed in
the low-frequency range in this study. In the high-
frequency range, the bridge’s damage features are
sparsely disseminated, but they can still contribute to
damage detection.

SVM using MFCCs

Using the vehicle’s frequency responses has been
proved to be an effective way to classify healthy and
damaged cases. However, the features input into the
SVM model is boosted as the increase of the used
frequency responses. For example, when selecting
0–1000 Hz frequency responses as input, there will be
13,109 features. Even though the test accuracy can be
enhanced, training SVM will become computationally
expensive. Besides, if SVM with nonlinear Kernels is
utilized, grid-search strategy needs to be used to find
the best hyperparameters. The training efficiency is
pretty low. Therefore, finding a suitable way to reduce

Figure 9. Selection of frequency ranges: (a) accuracy using
frequency responses in different ranges and (b) accuracy using
short-range frequency responses.
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the input dimensions is of great importance. Principle
Component Analysis (PCA) is a very effective method
used in SHM.44 Employing PCA, the used frequency
range 0–5000 Hz (65,537 features) in Section ‘‘SVM
using frequency responses’’ can be decreased to 99
dimensions when the explained variance ratio (EVR) is
99.99%. However, the test accuracy using the four
Kernels in SVM becomes 0.457 (Linear), 0.467
(Polynomial), 0.467 (RBF), and 0.467 (Sigmoid),
respectively, and all results cannot reach 0.5. Thus,
PCA may not suit the above problem well according to
the test results. This paper utilized MFCCs to reduce
feature dimensions and improve training efficiency. In
the later discussion, all 0–5000 Hz frequency responses
are used to calculate MFCCs because the high-
frequency range (1000–5000 Hz) is typically repre-
sented as just a few MFCCs, and this will not impact
the calculation efficiency.

Selection of filter banks’ number and SVM Kernel
Number of filter banks. When calculating MFCCs, the

first step is to select a good number of filter banks (P
in Equation (4)). In acoustic recognition, this number
is typically chosen as between 22 and 40. But in bridge
damage detection, the optimal number may vary. We
employ 3–100 filter banks to perform damage detec-
tion problems. In this section, case 2 is used as an
example to select the best number of filter banks, and
all time-domain responses of the vehicle are regarded
as one frame, namely N = 1. Besides, as the hyperpara-
meter C is a shared one in four Kernels, it is set to be
1.0. For the other hyperparameters: g, r, and d, the
grid-search strategy is utilized to find the best accu-
racy. In the above process, evenly and unevenly distrib-
uted filter banks, as introduced in Section ‘‘MFCCs
and SVM-based methodology’’ are utilized to make a
comparison.

When Mel filter banks are evenly distributed in the
frequency domain, the accuracy is plotted in Figure
10(a). We can see that when the number of evenly dis-
tributed banks is deficient, MFCCs cannot capture
damage information in the frequency-domain
responses. When the number increases to near 40, the
accuracy becomes relatively stable. If better results are
required, the number is expected to be more than 60.
In comparison, if Mel filter banks are unevenly distrib-
uted, we can see from Figure 10(b) that, like the sce-
nario using evenly distributed filter banks, a small
number of the filter banks is not much effective for
damage classification. However, when the number
increases to 20, the classification performance using all
four Kernels can reach good results. Using the uneven
ones can save half number of filter banks used in dam-
age detection. The main reason for the above

phenomenon is that the latter concentrates on low-
frequency responses but does not ignore the high-
frequency range, while the evenly distributed filter
banks treat all frequency ranges equally, thus more
banks are needed to capture damage features in both
low- and high-frequency ranges. Compared to evenly
distributed Mel filter banks, MFCCs utilizing the
uneven ones are computationally efficient since fewer
features will be input into the SVM model. In the later
analysis, the unevenly distributed Mel filter banks are
employed. Furthermore, from Figure 10(b), we can
also notice that the Polynomial and Linear Kernel’s
performance is better than the others, and the Sigmoid
Kernel shows the worst test accuracy. However, all
Kernels can make the test accuracy more than 0.93.
The contents related to Kernel selection will be dis-
cussed in Section ‘‘Kernel selection.’’ To maintain high
accuracy, in this study, 61 filter banks that perform
well on all Kernel functions are utilized.

Kernel selection. As aforementioned, Kernel function
selection is one of the most critical steps for training

Figure 10. Selection of Mel filter banks: (a) evenly distributed
Mel filter banks and (b) unevenly distributed Mel filter banks.
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the SVM model. Case 0 and case 2 using different
Kernels were discussed before. To select the best
Kernel, the performance of four Kernels using one
frame for all cases is shown in Table 4. The grid-search
strategy is used for Polynomial, RBF, and Sigmoid
Kernels to find the best test accuracy.

It can be seen from Table 4 that the test accuracy
using different Kernels can reach at least 0.916. The
Polynomial Kernel performs the best for all cases, and
the next one is the Linear Kernel. However, as Table 1
shows, the Polynomial Kernel has four hyperpara-
meters. Using the grid-search strategy will cost much
time to find the best hyperparameters, especially when
d.3. Therefore, the Linear Kernel is selected in this
paper to reduce the training time. In the previous anal-
ysis, the hyperparameter C is selected as 1.0, and C can
control the SVM model using soft or hard margins.
Adjusting the value of C from 0.1 to 106, we find that
the test accuracy changes very little, so 1.0 is used in
the later investigation.

As the Linear Kernel performs well for the damage
detection problem, we believe that the datasets become
linearly separable using MFCCs in the high dimen-
sional space. For this reason, the dimensions of input
features using MFCCs or frequency responses are
reduced to three using PCA to make it into a 3-D
space, as shown in Figure 11. Notice that the features
are not explainable after PCA, so the numbers in axes
are just featured values in low dimension space. It can
be seen from Figure 11(b) that using MFCCs makes
cases 1–6 separate from the undamaged case even
though there are noised examples in case 0. Using fre-
quency responses cannot separate case 0 and other
cases linearly.

MFCCs considering time frame. When N = 1, it means
to take all time-domain responses as one frame, so

there will be P MFCCs obtained by Equation (4).
When the frame number N.1, the time-domain
responses are divided into N frames. So when the vehi-
cle passes the bridge once, there will be N � P MFCCs.
In sound recognition, the frame generally is decided by
the time, such as 0.1 s. However, in bridge damage
detection, if the time is very short, the vehicle cannot
collect much information about the bridge, and
obtained MFCCs may not contain enough dynamic
properties of the bridge. In this paper, six frames are
selected, so there are 6136 = 366 MFCCs as input fea-
tures. Because the period for each passage is different,
the time-domain responses are divided into six frames
averagely. Then, for each frame, the same process is
executed to extract MFCCs to feed the SVM. The
damage detection results are shown in Table 4.

From Table 4, we can see that when different
Kernels are employed for different cases, dividing the
original signals in the time domain into six frames
makes the damage detection accuracy better than just
regarding all vibration data as one frame in most sce-
narios, especially for case 1 when the damage degree is
relatively low. To investigate such a phenomenon, tak-
ing case 1 as an example, we analyzed 10 five-folder
CV accuracies for random selecting 49 runs from case
0. It is noticed that when one frame is employed, the
accuracy can be good or poor occasionally in 10 times
random selection. However, employing six frames can
always maintain good damage detection results.
Therefore, six frames are employed in the later
discussion.

Damage severity prediction. In previous discussions, it
has been proved that the SVM model can classify
intact and damaged cases using frequency responses
and MFCCs with high test accuracy. However, in
order to provide appropriate maintenance work, it is

Table 4. Accuracy using different time frames and different Kernels

Cases Linear Polynomial RBF Sigmoid

1 frame Case1 0.948 0.983 0.937 0.916
Case2 0.975 0.989 0.978 0.955
Case3 0.989 0.991 0.985 0.977
Case4 0.992 0.993 0.989 0.982
Case5 0.999 1.000 0.998 0.995
Case6 0.994 0.995 0.973 0.984

6 frames Case1 0.986 0.990 0.955 0.979
Case2 0.986 0.987 0.985 0.977
Case3 0.988 0.993 0.988 0.987
Case4 0.983 0.987 0.982 0.981
Case5 0.998 0.999 0.999 0.999
Case6 0.996 0.996 0.988 0.987
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also important to detect the extent of damage (or dam-
age degrees). For this reason, the damage severity pre-
diction is investigated in this section. As shown in
Table 2, all cases are labeled as classes 0–6. For case 0,
50 random samples out of all 506 samples are used to
avoid the sample imbalance problem. Therefore, there
are 340 samples and 366 features in total.

Because SVM is initially used as a binary classifica-
tion model, there are two strategies when addressing
multiple classification problems: one versus one (OVO)
or one versus rest (OVR). OVO means that every two
classes will be used to train an SVM model to find their
decision boundary, and the OVR method is to regard
one class as the first label and all the rest as the second
label to train an SVM model. Since finding decision
boundaries between every two cases is a special focus
in bridge damage detection, OVO is employed in this
study.

In the process of training and testing an SVM
model, 50% of samples are used to train, and the rest

are utilized for testing. Confusion Matrix, a generally
utilized summary matrix of prediction results on a clas-
sification problem, is used in this paper to evaluate the
trained SVM model’s performance. Figure 12 plots the
confusion matrix for all predicted classes. The diagonal
values mean that true and predicted labels are the
same, so numbers in the diagonal are an accurate
prediction.

From Figure 12, it can be seen that using the SVM
model can classify different damage severity accurately.
For those wrongly predicted labels, we notice that they
are not far from the diagonal. It means that the SVM
model will not make a big mistake when predicting
damage severity. The predicted labels are around the
true labels. Furthermore, it can be found that different
damage cases are also linearly separable in Mel fre-
quency space as the Linear Kernel is used to calculate
the confusion matrix. Employing a 5-folder CV, the
test accuracy ratio of the SVM model for multiple clas-
sifications is 0.962.

Influence on damage detection
Influence of the car’s weight. In the previous discus-

sion, the heavy car in Table 2 is used. To investigate
the influence of car’s weight, the car without extra
weights is used in this section. Similar to Section
‘‘Damage severity prediction,’’ the confusion matrix is
plotted in Figure 13.

It can be seen from Figure 13 that when the normal
car is used, the number of wrong predictions is

Figure 11. 3-D comparison of using frequency responses and
MFCCs. (a) 3-D visualization for frequency responses (0 –
5000 Hz) using PCA (65,537 ! 3 dims, EVR = 0.353) and (b)
3-D visualization for 61 MFCCs using PCA (61 ! 3 dims,
EVR = 0.599).
MFCC: Mel-frequency cepstral coefficient; PCA: Principle Component

Analysis.

Figure 12. Comparison between true and predicted labels
using heavy car.
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increasing. But we can see that the false identification
is still distributed around the diagonal. This means that
the SVM model can distinguish a large part of dam-
aged cases. After a 5-fold CV, the normal car’s overall
test accuracy is 0.791. Therefore, to improve the accu-
racy of bridge damage detection, heavy vehicles are
recommended in practical engineering.

Influence of damage severity and sample number. In this
part, low damage severity with a limited number of
samples is discussed. Cases with low damage degrees
are shown in Table 5. Heavy car is used for low dam-
age detection. For the bridge’s healthy state, 20 sam-
ples are randomly selected from 506 samples in case 0.
The confusion matrix for predicting low damage cases
are shown in Figure 14. We can see that low damage
cases can be identified using the SVM model as well.
But because the samples are relatively limited, the
SVM model may not be able to learn the features of
MFCCs completely, so there are some mistakes in

predictions. The 5-folder CV result for low damage
cases is 0.864.

Conclusions and future work

This paper proposes a method to indirectly detect the
bridge’s damage using drive-by vehicle’s vibration data,
in which the frequency responses and MFCCs are uti-
lized as damage indicators. MFCCs, initially used for
acoustic recognition, were modified to suit the indirect
bridge inspection method. Then, SVM is trained to
identify the bridge’s damage. Trained SVM using
MFCCs can detect the bridge’s damages with high
accuracy. Laboratory experiments using a continuous
bridge and a model car confirm the practicality of the
proposed method. The main conclusion remarks are
shown below:

(i) The passing vehicle’s high-frequency responses
also contain the bridge’s damage information and
can play an important role in the bridge’s health
assessment in addition to its low-frequency
responses. With the increase in the utilized fre-
quency range, the accuracy of damage detection
will be improved until it becomes stable. Based on
lab-scale experiments, the authors recommend
using frequency responses within the 0–1000 Hz
range for practical applications.

(ii) By transforming Hertz-scale frequency responses
into MFCCs, datapoints of intact and damaged

Figure 13. Comparison between true and predicted labels
using normal car.

Figure 14. Comparison between true and predicted labels for
low damage severity.

Table 5. Low damage cases.

Cases Case 7 Case 8 Case 9 Case 10

Added mass (kg) 1 2 3 4
Damage degree (%) 2.41 3.22 4.02 4.83
Heavy car runs 27 17 19 20
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cases in the high dimension space become linearly
separatable. Using MFCCs makes damaged cases
easier to be detected by SVM models. The Linear
Kernel is recommended for practical application
since other Kernels depend on tuned hyperpara-
meters heavily.

(iii) Compared to evenly distributed filter banks, the
uneven ones need fewer banks to make the accu-
racy stable, thus can reduce the number of fea-
tures fed into the SVM model. Also, dividing the
original acceleration signals into several frames
can improve the damage detection accuracy espe-
cially when the damage severity is low. The test
accuracy is more than 96.2% for detecting differ-
ent damage scenarios when 61 uneven filter banks
and 6 frames are utilized in this paper.

(iv) The weight of the vehicle can affect the collection
of the bridge’s dynamic properties, and the accu-
racy will be improved as the vehicle weight is
increased. In practical bridge damage detections, a
heavier car is recommended.

Despite the findings summarized above, there are
still many factors that could negatively influence drive-
by bridge damage detection procedures in actual condi-
tions, such as the environmental noise, different pass-
ing traces, engine effects, etc. As the future work of
this research, we will investigate the effects of real dam-
ages and different damage scenarios on the proposed
method. In addition, influences of the bridge deck’s
roughness and other ongoing traffic impacts on dam-
age detection results will be checked by full-scale
experiments with different modal parameters.
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Appendix

Figure 15. Evenly distributed filter banks. Figure 16. Unevenly distributed filter banks.
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