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This paper presents a footbridge damage detection and classification framework using smartphone-recorded
responses of micromobility and deep learning techniques. Time—frequency representations (TFRs) of scooter
vibrations are employed to detect and classify footbridge damage severities using a Two-Dimensional Con-
volutional Neural Network (2D CNN). A One-Dimensional (1D) CNN using scooter frequency spectra was
also investigated for comparison. The effectiveness of the method was verified using a numerical model of
scooter-footbridge interactions and field tests on a real footbridge. The results indicated that both CNNs were
sensitive to footbridge frequency alterations caused by damage in the numerical simulations. Nevertheless, the
performance of the 1D CNN experienced a substantial decline in field tests involving stochastic influencing
factors, whereas the accuracy of damage classification using the 2D CNN remained high. Finally, reasonable
interpretations for the superior performance of the 2D CNN are provided using Shapley Additive Explanations

(SHAP) values.

1. Introduction

Structural health monitoring (SHM) of bridges has gained global
prominence in recent decades owing to concerns related to aging, de-
terioration, and the potential risk of collapse [1]. Traditionally, bridge
inspection was primarily dependent on vision-based approaches con-
ducted by experienced engineers. However, owing to rapidly increasing
human requirements, the scale of bridge structures has reached a new
level, rendering manual inspection dangerous or even unachievable [2].
The recent development of sensory devices has highlighted vibration-
based methods that provide new perspectives for monitoring the health
of structures [3,4]. The core task of SHM is to identify damage to struc-
tures and provide information for maintenance, reparation, and early
warning of possible failure. This task traditionally involves the installa-
tion of different sensors, such as temperature sensors, strain gauges, and
accelerometers, directly onto the target bridge (i.e., the direct method)
so that data can be continuously collected and analyzed [5,6]. How-
ever, several challenges have been identified in practical applications,
especially the high cost of sensory networks. Consequently, monitoring
systems are typically prioritized for large-scale or essential bridges.
Numerous footbridges that significantly facilitate humans’ daily lives
may not have been properly monitored.

An alternative approach, known as the indirect method, was intro-
duced by Yang et al. [7] in 2004 and subsequently validated experi-
mentally by Lin and Yang [8] in 2005. It was found that the bridge’s
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fundamental frequency was identifiable in the vibrations of the quarter-
car model and experimental tractor-trailer system. Since sensors are
installed on vehicles rather than bridges, checking, maintaining, and
repairing the sensory system becomes easier once faults are noticed.
Furthermore, this approach significantly reduced the costs associated
with bridge monitoring. Consequently, indirect methods have attracted
considerable attention. Numerous studies involving numerical simula-
tions, laboratory experiments, and field tests have been published [9,
10].

Contemporary research endeavors on indirect methods have uni-
versally focused on identifying bridge frequencies and modal shapes
by analyzing vehicle responses. Two key obstacles are typically high-
lighted: the vehicle’s self-information regarding its acceleration and
the influence of road roughness. To remove the vehicle’s dynamic
characteristics from its frequency spectrum, the use of special vehicles
with frequencies higher than those of the bridge [11], high-damping
vehicles [12], and cutting-edge contact-point (CP) responses have been
examined [13,14]. However, specialized vehicles may require custom
design and manufacturing in industries and may not be available for
regular use. In addition, the back-calculation of CP responses typically
requires good estimations of vehicular parameters [15], which can be
a notable challenge for engineering applications. The second difficulty
is closely associated with road roughness. To eliminate this influence,
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researchers have explored various approaches, including connected
vehicles [16,17], active excitations on bridges [18], and external ex-
citations or amplifiers on vehicles [19,20]. Nevertheless, employing
connected vehicles may be challenging because of practical operational
difficulties [21] and issues related to the time synchronization of
sensors [22]. Active excitation can influence ongoing traffic; however,
additional forces applied to vehicles may not be permissible for com-
mercial cars. Furthermore, bridge frequencies may not be sensitive to
local damage, mainly when it occurs on a smaller scale [23]. Alterations
in the modal parameters and measured signals can be easily masked
by operational and environmental noise. These limitations suggest that
more sensitive and noise-tolerant data-driven methods can be utilized
for damage detection [24].

Owing to advancements in hardware and computer science,
machine-learning techniques have been extensively investigated across
various domains in recent decades, including damage detection and
classification using indirect methods. In 2014, Cerda et al. [25] in-
troduced a support vector machine (SVM) to classify different bridge
damage cases simulated using additional masses on the bridge and
modifications to the boundary conditions. The results showed that the
detection accuracy could equal or surpass that of bridge accelerations.
To increase bridge damage classification efficiency and accuracy, dif-
ferent dimension-reduction techniques, such as stacked auto-encoders
(SAE), Mel-frequency cepstral coefficients (MFCCs), and Uniform Man-
ifold Approximation (UMAP), have been verified to be effective in
eliminating the influence of environmental noise and highlighting
damage-sensitive information [26-28]. In 2019, Mei et al. [29] pio-
neered the application of MFCCs for indirect bridge health monitoring.
The MFCCs were extracted for different vehicle runs, and their statis-
tical characteristics were employed as a reference for bridge damage
severity estimation. In 2023, Lan et al. [30] classified different health
states of a bridge using raw vehicle accelerations. It was found that
compared to existing algorithms, the proposed optimized AdaBoost-
linear SVM exhibited the potential to enhance the detection accuracy
by 5% to 16.7%. In 2022, Mokalled et al. [31] presented a Bayesian
estimation technique for detecting and classifying bridge damage. The
study showed that the presence, location, and severity of bridge damage
could be accurately detected using high-fidelity simulated data from
vehicles.

Deep learning, primarily relying on various types of deep neural net-
works, possesses a superior ability to extract crucial features compared
to traditional machine learning methods. To explore the capabilities
of deep learning, Malekjafarian et al. [32] suggested the application of
artificial neural networks (ANNs) to detect bridge damage by analyzing
vehicle responses. The vehicle positions, speeds, and frequency points
were incorporated into the models based on either the acceleration
or frequency spectra. Numerical simulation results for a quarter-car
model and a simply supported beam model demonstrated that damage
could be detected, and benchmarks for assessing damage severity were
provided. These models were later extended by Corbally and Malekja-
farian [33] to include the influence of temperature when CP responses
were employed. Convolutional neural networks (CNNs) are a type of
deep learning technique that was initially developed for image classifi-
cation [34]. They have proven to be highly effective in extracting local
features from signals and have been widely used in SHM, including
applications such as data anomaly detection and structural damage
identification [35-37]. In 2017, Abdeljaber et al. [38] introduced a
method using CNNs for real-time damage detection and localization
using raw acceleration signals from accelerometers installed on struc-
tures. To enhance the effectiveness of damage identification using
CNNs, in 2023, Shu et al. [39] combined a modal-updating strategy
with One-Dimensional (1D) CNNs. They employed an updated finite
element (FE) model to generate training data for the CNN training,
which enabled damage localization. Additionally, the FE model was
used for damage severity quantification by minimizing an objective
function that incorporated modal information from the experiments

Automation in Construction 166 (2024) 105587

and numerical models. Researchers exploring indirect methods have
also recognized the remarkable capabilities of CNNs. In 2020, Locke
et al. [24] successfully classified different levels of bridge damage with
an accuracy exceeding 80% using CNNs. Their approach considered
factors such as temperature, vehicle speed, and weight, albeit limited to
frequency responses within the 3-10 Hz range of the vehicle. In 2022,
Hajializadeh [40] proposed a transfer learning-based CNN framework
and applied it to railway bridges. The results demonstrate that fine-
tuned CNNs can accurately and automatically detect and classify bridge
damage, even in the presence of varying speeds, rail irregularities, and
operational noise. In 2023, Corbally and Malekjafarian [41] introduced
a calibrated vehicle and bridge interaction model for CNN model
training, which successfully predicted the bridge damage positions and
severity. Although several encouraging findings have been presented in
the current literature, three concerns can be noted: (1) A considerable
majority of studies that employ deep learning techniques have been
validated primarily through numerical simulations or laboratory exper-
iments. However, these approaches have not been validated in the field,
particularly when unpredictable factors are involved. (2) Conventional
indirect methods are constrained to heavy vehicles and are typically not
feasible for footbridges. In addition, road bridges and footbridges can
have different structural design patterns, which limits the applicability
of the current investigations. However, footbridges, which often span
tens or even hundreds of meters, play a significant role in everyday life.
Therefore, their safety requires equal monitoring [42,43]. (3) Current
studies typically utilize the frequency responses or raw accelerations of
vehicles as inputs to machine learning models. Few studies have consid-
ered vehicular time—frequency representations (TFRs), which have been
verified as superior to 1D signals in structural damage diagnosis [44].

The Internet of Things (IoT) network, which incorporates indirect
bridge health monitoring, has emerged as a pivotal constituent [45].
Vehicles or micromobility instrumented with an array of sensors can
contribute to this process [46]. Recent investigations by Quqga et al.
[47] delved into the feasibility of extracting the modal parameters of
footbridges using bicycles equipped with smartphones. The findings
indicated that while the bicycle was resting on the footbridge, the fun-
damental frequency of the footbridge could be extracted well. However,
the identification of modal parameters can be significantly hindered by
both noise and the actions of the rider when passing the footbridge.
Electric scooters, characterized by their convenience and lightweight
nature, are widely accessible across Europe and are generally allowable
on footbridges. They can be easily driven without pedaling forces.
Because of their availability and user-friendly characteristics, scooters
have the potential to accelerate the development of smart cities.

This study proposes a deep learning-based framework to detect and
classify footbridge damage using smartphone-recorded responses from
passing scooters. Two types of CNNs, namely, a 1D CNN utilizing the
scooter’s frequency spectra and a Two-Dimensional (2D) CNN employ-
ing its TFRs, were trained to predict the severity of footbridge damage.
Accelerations from scooters with different degrees of freedom (DOFs)
were stacked to form multiple input channels for the CNNs. Numerical
simulations employing a developed rider-scooter model and field tests
on a real footbridge were performed to validate the proposed frame-
work. The remainder of this paper is structured as follows: Section 2
outlines the steps in the proposed deep learning framework and the
fundamental concepts of CNNs. Section 3 presents numerical simula-
tions employing the developed 4-DOF scooter and a simply supported
footbridge model. Section 4 presents a practical case in which a real
scooter and footbridge in the field are employed, and the damage
detection results using different CNNs are discussed. Finally, concluding
remarks are provided in Section 5.

2. Proposed framework
The footbridge damage-detection framework employed in this study

is shown in Fig. 1. Initially, as the rider drove the scooter on the foot-
bridge, its acceleration was recorded using smartphones. The recorded
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Fig. 1. Framework of the proposed method.

data are then processed to form different channels and subsequently
segmented before being fed into different CNNs. Finally, the scooter
accelerations are preprocessed by a fast Fourier transform (FFT) to feed
the 1D CNN or a short-time Fourier transform (STFT) for the 2D CNN.
The dataset was partitioned into training and testing sets to facilitate
the calculation of the testing accuracy. The following section introduces
the steps and basic concepts of the framework.

2.1. Data collection

In conventional SHM strategies, the placement of sensors is of great
importance for capturing damage-sensitive changes in bridge dynamic
patterns owing to the numerous DOFs of the structures [48,49]. A
salient advantage of using a passing vehicle in the indirect method is
that the vehicle itself typically has limited DOFs (when its components
are assumed to be rigid, e.g., 4-DOF half-car [50] and 7-DOF full-car
models [51]). Theoretically, a vehicle traverses all points on a bridge
during its passage, enabling a comprehensive collection of dynamic
information from every bridge location. Consequently, this approach
provides a new way of monitoring the bridge’s health status.

For data collection in this study, smartphones were installed on a
scooter to collect vibrations. Initially, the scooter was used to pass the
bridge several times when the bridge was in a healthy state (baseline).
After the bridge has been in service for months or years and possible
damage has occurred, the scooter is utilized again to collect its vibra-
tions when passing the bridge. All scooters running on a healthy or
damaged bridge were utilized to train neural networks to predict the
health condition of the bridge.

2.2. Data preprocessing

Prior to inputting the scooter data into the CNNs, it is necessary
to preprocess the signals to ensure compatibility with different neural
networks’ input formats. Data preprocessing consists of three steps.

1. Synchronization: In the proposed framework, multiple smart-
phones can be attached to a scooter to capture its vibrations as it
passes through the footbridge. These smartphones can be positioned in
different positions on the scooter. However, due to manual operations,

data-collecting software cannot be activated and deactivated simulta-
neously, even with the same sampling frequency. In this study, two
smartphones are installed on a single scooter, one attached to the body
and the other to the front wheel. We employed the Unix time after
collecting accelerations from the two smartphones to synchronize the
times.

2. Channel forming. A single smartphone can typically collect accel-
eration data in six directions: three translational and three rotational.
However, when the scooter passes over the footbridge, the most sig-
nificant signals for analysis are the vertical and pitching accelerations
of the scooter. Other vibrations collected in different directions were
disregarded to reduce the training parameters of the CNNs. Addition-
ally, to achieve this objective, signal combinations may be necessary
to combine acceleration signals from different directions into a single
signal. For instance, if a smartphone is not installed perpendicular to
the ground, the vertical acceleration must be calculated using signals
from two translational directions. Ideally, the selected channels should
correspond to the DOFs of a vehicle.

3. Signal segmentation. When a scooter passes over a footbridge,
it is expected to maintain a constant speed. Consequently, the scooter
must accelerate before reaching the footbridge and decelerate after
crossing it. Signal segmentation is required to eliminate any superfluous
information (unrelated to the footbridge) during scooter vibrations.
This means the collected signals will only be utilized for neural network
training when the scooter’s wheels are on the footbridge.

Once all of the aforementioned processes have been completed, the
CNN input channels will be properly formed. In each channel, only the
vibration signals from the scooter on the footbridge were selected for
further analysis and training.

2.3. CNN training

CNN is one of the most popular neural networks for extracting
damage-sensitive features from signals. In this study, two types of
CNNs, 1D and 2D CNNs, based on VGG-16, were developed to extract
damage-sensitive features of a footbridge in scooter vibrations. To
reduce the number of training parameters, the fully connected layers
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Fig. 2. 1D CNN configuration.

in the original VGG-16 neural network [52] are condensed from four
layers to only two layers.

1D CNNs are good at addressing signals recorded by multiple ac-
celerometers at different structural positions, whereas 2D CNNs are
specialized in identifying images [53]. In the previous applications
of CNNs for monitoring large structures, it was found that a large
number of measurement sessions were required. When the sensors were
installed on the scooter, the number of measurement points decreased
significantly. The inputs for CNNs consist of three key components: %,
representing the vertical acceleration of the scooter body; é,, denoting
the angular accelerations of the scooter body; and %,, meaning the
accelerations of the scooter’s front wheel. Experimental measurements
can be conducted using two smartphones: one attached to the standing
slab captures the body responses of the scooter, and the other attached
to the wheel restraint records the accelerations of the front wheel. Even
though the scooter is driven at a relatively constant speed when passing
the footbridge, its passing time in different runs is challenging to keep
strictly the same. To address this issue, when the scooter’s frequency
spectra were employed for 1D CNN training, the padding zero strategy
in the time domain was used to maintain the same FFT resolution for
all runs, resulting in the same input dimension for feeding into the
neural networks. This approach effectively preserved the information
gathered by smartphones. However, when using either the time domain
or the TFRs, only a portion of the signals can be utilized to maintain
the same input dimensions for all runs. This inevitably leads to a
loss of information. Nevertheless, by utilizing TFRs, both the time and
instantaneous frequencies can be obtained simultaneously, which is
advantageous for identifying footbridge information. In this study, the
use of frequency spectra and TFRs was compared using 1D and 2D
CNNs.

2.3.1. 1D CNN configuration
Fig. 2 illustrates the configuration of the 1D CNN. A 1D convo-

lution includes several convolutional layers followed by a rectified
linear unit (ReLU) activation function. The convolution operation was
accomplished using kernels [54]. The kernel size was selected to three
with one zero padding at each end of the signal. The maximum pooling
kernel size and stride length were both selected as two. Therefore, the
data length in one channel in the next layer becomes half the data
length in the current layer once the maximum pooling layer is utilized.
Finally, the data from all channels were flattened. The softmax layer
was used to form different probability values for different classes using
Eq. (1),
p =" 1

in Z,-C=1 i (€))
where z; , means the input of the softmax layer, and P, , represents the

probability of being the ith class for the nth sample. The Cross-Entropy
(CE) loss was employed in this study [54].

2.3.2. 2D CNN configuration

The architecture of the 2D CNN is shown in Fig. 3, in which TFRs
of the passing scooter’s vibrations are utilized as input. To ensure
that the input has the same dimensions, the signals must be truncated
to maintain the same time array after the vibrations of the scooter
are collected. Then, transform algorithms such as STFT [44] can be
utilized to transfer the time-domain accelerations of the scooter to 2D
representations. In this case, the kernel used in each channel is 2D. This
study selected the kernel size as three, with one zero padding around
the TF image, and ReLU was employed as the activation function. Then,
the maximum value in a neighboring 2D area is selected by the max-
pooling layers. The flattening process, fully connected layer, softmax
layer, and loss function remained consistent with those employed in
the 1D CNN.

3. Numerical simulations
3.1. Brief on the VBI model

Fig. 4 shows the rider-scooter model developed by the authors. The
model encompasses four DOFs indicated by yellow arrows. When the
rider’s static mass M, is 80 kg, its used parameters are an optimized
mass m, = 1.03M, of 82.4 kg, an optimized rider stiffness k, = 1340M,
of 107 200 N/m, and an optimized rider damping ¢, = 51.6M, of 4128
N s/m [55]. For the scooter, it owns a body mass m of 31.2 kg, body
moment of inertia I, of 101.5 kg m?, front-wheel mass m, of 1.17 kg,
suspension stiffness k; of 13067 N/m, suspension damping ¢, of 2000
N s/m, tire stiffness k,;, k,, of 80000 N/m. In addition, some constants
are a; = 042 m, a, = 05 m, 6§ = 0.15m, ¢ = 0.07 m, and ¢ =
77/18 rad [56]. The speed of the scooter is 5.55 m/s when it passes
the footbridge. The dynamic equilibrium equations of the rider-scooter
model can be given by Egs. (2)-(5).

M, z5(1) + C,z8°(1) + K,z5°(1) = p, () (2)
>cr + ¢ azcg —Cy —c,
ac ajazc,  —ac 0
CU — 1%s 1435 1%s 3)
—cg —ascg [N 0
| —¢ 0 0 c,
[k, +k,+ky  ask, — arkp -k, -k,
a kg — a)k ajask, + a2k —ak 0
KU _ 1%s 27412 1430 212 1%s 4)
—k —azk; kg + ki 0
-k, 0 0 k,
T
Po = [kt arkyyuen, kpuey, 0], 286 (0) = [25¢, 08, 25, 25017 (5)
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where M, = diag(m,, I, m;,m,) is the mass matrix, and C,, and K,
denote the damping and stiffness matrices of the rider-scooter model.
The vectors z5°, z5°, and z5° correspond to the scooter’s acceleration,
velocity, and displacement, with gc denoting the responses at the
scooter’s gravity center. The term p, signifies the external forces acting
on the rider-scooter model. The notation u,; signifies the displacement
at the ith contact point, which can be determined by the equation
U, = uy; +2z,,i = 1,2, where u; represents the footbridge’s deflection at
the ith contact point, and z,; stands for road roughness. The sampling
frequency is set at 100 Hz.

It should be noted that capturing the center of gravity of a scooter
in practical settings poses difficulties, and the direct recording of its
vibrations is not feasible. In the simulations, it was assumed that
smartphone 1 was located at a distance of ¢ m from the center of
gravity of the scooter body, as shown in Fig. 4. Assuming a rigid scooter
body, the simulated vibrations of the scooter are represented by Eq. (6),
where the superscript si denotes the simulations.

58I __ z8C gc nsi _ pgc zsi _ z8¢C
20 =20+ 0% xe,0] =08, 2 = Z, 6)

The FE model of the simply supported footbridge is shown in Fig. 5.
It consists of 20 beam elements, each of which has two nodes with two
DOFs (vertical displacement u; and rotation ¢;) per node. The equation
of motion of the footbridge is given by Eq. (7),

Mz (0 + CzY (0 + Kyzl () = pY () %)

where the mass, damping, and stiffness matrices of the footbridge are

represented by M,, C;, and K,, respectively; zY, z¥, and z}Y are the

footbridge’s accelerations, velocities, and displacements at nodes; pl’;’ is
the external force vector applied to the nodes. The bridge’s parameters
are as follows: length L = 33 m, element length / = 1.65 m, flexural
stiffness E,1, = 1.389 x 10° N m? -, and mass per unit length m, =
224 kg/m. For the damping matrix, the Rayleigh damping assumption
was utilized with the first two damping ratios &, = &, = 0.02 [57].

The artificial road roughness was generated according to ISO 8608
[58] with G,(ny) = 4 x 107% m>. The road roughness smoothed using
a moving average filter (MAF) is shown in Fig. 6. When a scooter
is on a bridge, its wheels do not continuously act on the nodes of
the footbridge. Once the wheels are not on the nodes, the Hermitian
cubic interpolation function can distribute the scooter excitations to
the footbridge nodes. The details of road roughness generation and
the VBI interaction process can be found in [14]. Furthermore, 10%
Gaussian noise was added to the collected scooter accelerations to
simulate environmental effects.

3.2. Bridge damage scenarios

A common method for simulating structural damage is to reduce
the stiffness of the elements [59,60]. In this study, we examined five
simulated damage cases (SDCs), denoted as SDCs 1-5, as shown in
Fig. 5, in which the 10th element of the footbridge is damaged. Here,
the damage factor y, is defined as the ratio between the stiffness of the
10th element after damage occurs and that of the undamaged element.
SDC 0 with u;q = 1.0 indicates that the bridge is in a healthy state.
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Table 1
Footbridge frequencies and runs of different SDCs.
SDCs SDC 0 SDC 1 SDC 2 SDC 3 SDC 4 SDC 5
fy/Hz 3.593 3.573 3.549 3.519 3.480 3.427
»n/Hz 14.373 14.369 14.366 14.362 14.362 14.350
»/Hz 32.353 32.173 31.975 31.732 31.732 31.033
Scooter runs 120 60 60 60 60 60

The first three natural frequencies of all SDCs have been provided in
Table 1.

The data in Table 1 reveal that the damage employed in various
SDCs has only marginal effects on footbridge frequency. Notably, in
the case of SDC 1, the alterations in the footbridge’s first three fre-
quencies were relatively modest, with changes of only 0.020, 0.004,
and 0.180 Hz.

3.3. Damage detection results and discussions

Before employing the CNNs for damage detection, an initial exam-
ination of the scooter responses in the healthy state of the footbridge
(SDC 0) was conducted. The scooter responses and TFRs are presented
in Fig. 7. where zj’ s éj" , and zf’ denote the simulated scooter accelera-
tions in Eq. (6) with Gaussian noise. Subsequently, FFT was applied to
derive the frequency spectra of the scooter accelerations.

The frequency spectra shown in Fig. 7, one can find that when
scooter body bounce ¥ and body rotation 6% are utilized, there are
peaks around the footbrldge s fundamental frequency ( “ =3.593 Hz)
However, as the scooter’s second frequency f 5T is quite close to f;, it
becomes challenging to ascertain whether the peaks at approximately
4 Hz are associated with the scooter or the footbridge. In the sim-
ulations, the authors explored the frequencies to which these peaks
were linked by deliberately lowering the frequency of the footbridge
(e.g., introducing more significant damage, such as u;, = 0.1). The
findings revealed that even with a reduction in the fundamental fre-
quency of the footbridge, the peaks persisted at approximately 4 Hz.
Thus, it can be inferred that the peaks aligned with the second fre-
quency of the scooter rather than with the fundamental frequency of

the footbridge. Nevertheless, researchers face considerable difficulty in
differentiating between the frequencies of footbridges and scooters in
practical engineering scenarios, mainly when they are very close.

The TRFs of the scooter accelerations were calculated as shown in
Fig. 7, in which the STFT is employed with a window length of 100
and an overlapping length of 99. To ensure that the dimensions of
the TFRs in all runs were the same, the scooter accelerations in the
last 5 s were selected. This temporal segment is preferred because,
during these moments, the scooter actively stimulates the footbridge,
rendering it more informative about the footbridge’s response. From
the TFRs, it can be observed that, similar to the frequency spectra, for
the scooter body bounce % and body rotation 6%/, the peaks are more
related to the scooter itself 1nstead of the footbrldge In addition, for the
scooter’s wheel responses, it is difficult to find clear information about
the footbridge, predominantly because of significant road roughness
and noise contamination.

To detect damage to the footbridge, the proposed framework (Fig. 1)
is employed to train the two types of CNNs: 1D and 2D CNNs. In the
simulations, the accelerations of the scooter across its three DOFs were
readily obtainable and segmentable. Consequently, the initial steps
of data collection and preprocessing were omitted. Consequently, the
acquired signals can be directly input into different CNNs for training,
following zero-padding and FFT for the 1D CNN and signal selection
and STFT for the 2D CNN. The number of runs for all SDCs is listed in
Table 1.

To train the CNNs, 60 runs originating from SDC 0 were randomly
selected to mitigate the data imbalance. Thus, the dataset comprised
360 runs across various SDCs. During the training process, 70% of the
runs in the dataset were designated for training, and the remaining runs
were allocated for testing. The model training process was conducted
within the Python 3.10 environment with Pytorch [61]. The worksta-
tion employed at Aalto University was equipped with an Intel Core
i9-11900 CPU and 32 GB of RAM. An NVIDIA RTX 3090 graphics card
was used to expedite the training procedure.

The configurations of 1D and 2D CNNs are shown in Figs. 2 and
3, respectively. The hyperparameters governing the behaviors of these
two neural networks were selected as follows: batch size, 32; optimizer,
Adam [62]; learning rate, le=>; weight decay, le~>; loss function, CE
loss; and activation function, ReLU. An early stopping strategy was
implemented in anticipation of potential overfitting issues, and the
number of epochs was set to 400. The accuracy of predicting footbridge
damage severity can be calculated using Eq. (8) as follows:

TP+TN

Accuracy = m X 100% (8)
where TP represents “true positive”, FP represents “false positive”, TN
signifies “true negative”, and FN corresponds to “false negative”, as
shown in [63]. By utilizing the aforementioned hyperparameters and
training both CNNs over 400 epochs, the loss and accuracy related
to the damage severity classification for both the training and testing
phases are plotted in Fig. 8.

It is evident that both CNN architectures achieved a relatively high
testing accuracy (>90%). The testing accuracy stabilized at approxi-
mately 300 epochs, and the training accuracy reached 100% after the
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Fig. 8. Loss and accuracy in numerical simulations using different CNNs.
completion of all epochs. No evident overfitting was observed based on To demonstrate the feature-extraction capabilities of the employed
the testing loss trends. Moreover, a closer look reveals that the 2D CNN CNNs, Fig. 10 presents a 2D visualization of the output derived from
the convolutional layers using t-Distributed Stochastic Neighbor Em-
bedding (t-SNE). The data points representing the 300 scooter runs at
different SDCs were color-coded accordingly. The visualization demon-

strates that after the convolutional layers, the input of the fully con-

attains slightly superior testing accuracy and lower testing loss when
employing the same hyperparameters. The confusion matrices (CMs)
illustrating the damage-detection results for all SDCs using both 1D and
2D CNNs are presented in Fig. 9. The results demonstrate that despite
a slight reduction in footbridge frequencies in SDC 1-5, both CNN nected layers is grouped into distinct clusters corresponding to the
different SDCs, which verifies the capability of the CNN to extract

damage-sensitive features of footbridges from the passing scooter’s

architectures successfully predicted the various health conditions of the
footbridge with commendable accuracy, with the 2D CNN exhibiting a

marginally better performance. vibrations.
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4. Field tests on a real footbridge Table 2
Footbridge frequencies and runs of different EDCs.
4.1. Scooter and footbridge EDCs EDC 0 EDC 1 EDC 2 EDC 3
Added mass/kg 0 55 125 185
Field tests were conducted using scooters equipped with smart- S /M2 4.028 3.979 3.955 3.918
h lidate th d footbrid d detecti f fi/Hz 4.468 4.443 4.431 4.370
phones to vali a.e 'e proposed footbridge damage-detection frame- 1My 10.486 10.486 10.486 10.437
work, as shown in Fig. 11. The tests employed two smartphones: an f&/Hz 11.316 11.304 11.304 11.304
iPhone 12 (smartphone 1) mounted on the scooter’s body and an Scooter runs 124 65 63 60

iPhone 8 (smartphone 2) attached to the front wheel. To coincide with
the simulations, the scooter was driven to pass through a footbridge
with approximately the same road roughness for all the runs. In ad-
dition, note that there is a short distance at which the scooter must
accelerate to the maximum speed (20 km/h). The scooter can be driven
by an electric engine without pedaling forces.

MATLAB Mobile software was employed on the smartphones, as
shown in Fig. 12. As the scooter passes the footbridge, the smartphone
collects three translational accelerations (X, Y, and Z) and three
angular accelerations (RX, RY, and RZ), as indicated by the arrows
in Fig. 12. The sampling frequency was set to 100 Hz. The tests were
performed in an open area with normal environmental noise.

The footbridge used in the field tests is illustrated in Fig. 13. It was
supported at each end and was representative of real-life footbridge

structures. In this study, we employed different masses (standing people
in the middle of the footbridge) to simulate different experimental
damage cases (EDCs), which have been verified as a more practical way
to simulate damage to structures [27,64,65]. The specific values for the
additional masses were 55, 70, and 60 kg for masses 1, 2, and 3. The
various EDCs and the corresponding scooter runs conducted during the
field tests are listed in Table 2. The EDC 0 was obtained when there
was nobody on the footbridge.

Impulse excitation was applied to the footbridge to investigate the
influence of the additional mass. This process is completed by humans
jumping on a bridge. One smartphone was placed on the footbridge
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Fig. 11. Scooter, rider, and smartphones in field tests.
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(1/4 span) to collect the vibrations. The resulting footbridge accel-
erations in EDCs 1-3 are shown in Fig. 14(a). It is noteworthy that,
in the case of EDC 0, obtaining accurate natural frequencies of the
footbridge using the impulse excitation method is unachievable because
at least one person applies the excitation force. An alternative approach
is to employ the free vibration stage of the footbridge after the scooter
passes it, which is introduced in the subsequent section. Fig. 14(b)
illustrates the footbridge’s frequency spectra in EDCs 1-3. It is evident
that increasing the mass can reduce the fundamental frequency of
the footbridge. However, similar to the simulations, the decrease in
frequency was minimal. All identified frequency values have been
documented in Table 2, in which f o (the superscript ex means
experiments) represent the first four frequencies of the footbridge. Note
that for the first two frequencies lf]" and If;, there is a decrease,
whereas the third and fourth frequencies £, and f;7 may remain
relatively unchanged across the different EDCs.

4.2. Data collection and preprocessing

In the context of the previously described experimental setup, the
acceleration of the scooter as it passes over the footbridge can be

collected using the two smartphones. However, achieving perfect syn-
chronization in the initiation of data recording is challenging, owing to
the use of different smartphones for data collection. In order to address
this issue, synchronization is achieved by recording Unix time with a
resolution of 0.001 s on smartphones. The details of the synchroniza-
tion strategy are as follows: The starting timestamp is determined by
selecting the maximum value between the starting timestamps of the
two signals recorded by the two smartphones. Similarly, the ending
timestamp was obtained by selecting the minimum value between the
end timestamps of the two signals. The samples between the starting
and ending timestamps may not be identical due to sampling time
errors. In general, the erroneous timestamp was 0.001 s shorter than the
expected sampling timestamp. For the two smartphones used (iPhone 8
and iPhone 12), it was observed that there was typically a difference of
one sample within a 10-s interval. In this study, the vibrations during
the scooter’s passage on the footbridge were typically within 10 s.
Therefore, the final synchronization error was approximately 0.01 s for
every run. To address this, based on the timestamps recorded by iPhone
12, linear interpolation was employed to obtain the interpolated values
of the responses recorded by iPhone 8. By implementing this strategy,
we can obtain two synchronized signals of equal length.

Furthermore, to make the series of collected signals correspond to
the scooter’s DOFs, the accelerations collected by smartphones must be
preprocessed using Eq. (9).

.. . - .. . .2 22 \1/2
2 = 271,00 = Zpxy, 2 = (Ey, + £p) / ©)

where %,, is the translational acceleration collected by smartphone
1 along Z axis, Zzy; denotes the angular accelerations along RX of
smartphone 1, Zy, and Zy, are the translational accelerations collected
by smartphone 2 in the X and Y directions, respectively. Therefore,
the accelerations z¢*, éf", and Z;* corresponding to the three DOFs of
the scooter can be formed. The derived acceleration signals were orga-
nized into different input channels to train the CNNs in the proposed
framework.

Clipping the collected accelerations is essential in removing unre-
lated vibrations from the scooter’s recorded data, ensuring that only
the relevant information when the scooter is on the footbridge is used
for analysis. Fig. 15 has plotted a series of wheel accelerations when
the scooter passes the footbridge. Signal peaks occur when the scooter
enters and leaves the footbridge, which can be employed to clip the
acceleration when the scooter is on the footbridge.

To compare the direct and indirect methods, footbridge vibrations
(at 1/4 span), including the forced and free vibration stages, were
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recorded when the scooter passed the healthy bridge (EDC 0), as shown
in Fig. 16. During the forced vibration stage, the scooter traverses the
footbridge and vibrates strongly. After the scooter leaves the footbridge,
the footbridge vibrates freely because no external forces are applied.
The frequency spectra and TFRs of the two vibration stages are shown
in Fig. 17.

The forced vibration stage shown in Fig. 17(a) involves the in-
teraction between the scooter and the footbridge, resulting in the
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14. Footbridge frequency spectrums in different EDCs.

footbridge’s vibrations being affected by the passing scooter. Despite
the introduction of some noisy peaks owing to the presence of the
scooter, the direct method (using footbridge vibrations) is still able
to effectively identify the footbridge’s first several natural frequen-
cies. This highlights the capability of the direct method to capture
the dynamic behavior of a footbridge under external loading. From
Fig. 17(b), one can obtain the footbridge’s natural frequencies when the
footbridge is healthy (no additional mass, EDC 0), as listed in Table 2.
The following section presents an investigation of the proposed method
for detecting footbridge damage using scooter responses.

4.3. Damage detection results and discussions

First, we analyzed scooter acceleration. The accelerations, frequency
spectra, and TFRs of the scooter, when the footbridge is in a healthy
state (EDC 0), are shown in Fig. 18. A comparison of these results
with the simulated results (Fig. 7), we can observe that the accel-
erations of the scooter during the field tests are more complex and
variable. Whether it is the body bounces z¢*, body rotation #°*, or
the wheel responses z{*, it is evident that the frequencies of the foot-
bridge (indicated by dashed yellow lines) cannot be directly identified.
Using the STFT with a window length of 100 and an overlapping
length of 99, the TRFs of the scooter in the last 5 s were obtained.
However, it is clear that the TFRs have been heavily polluted by
environmental noises and road roughness, making it impossible to iden-
tify any footbridge-related frequency information manually. Therefore,
advanced techniques are required to extract critical damage-sensitive
features from scooter responses.
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Fig. 17. Footbridge frequency spectrums and TFRs.

In this study, two types of CNNs, as shown in Fig. 1, are employed to
detect footbridge damage by analyzing the scooter’s responses. To con-
duct the analysis, we randomly selected 63 runs from EDC 0, resulting
in 251 runs in the experimental dataset. For training purposes, 70% of
the runs were used, whereas the remaining 30% were used for testing.
The CNN configurations used in the simulations were identical. The
hyperparameters were selected as follows: batch size, 32; optimizer,
Adam; learning rate, le~®; weight decay, le~3; loss function, CE loss;
activation function, ReLU; and number of epochs, 400. The CE loss
and damage severity prediction accuracy values were calculated using
Eq. (8) and are presented in Fig. 19.

The results are shown in Fig. 19(a); one can see that using a 1D CNN
significantly decreases training loss after 150 epochs. This suggests
that the 1D CNN successfully learned certain features in the scooter
response indicative of footbridge damage. Furthermore, the testing loss
decreased, although a slight overfitting tendency was observed after
350 epochs. However, both training and testing accuracies continued
to improve throughout the training process. Upon reaching 400 epochs,
it becomes evident that the testing accuracy reached a value exceeding
70%. In the case of the 2D CNN, as illustrated in Fig. 19(b), both the
training and testing losses exhibit earlier declines than those of the 1D
CNN. Moreover, the training loss of the 2D CNN approaches a value
close to zero. Although there was a slight increase in the testing loss
after 150 epochs, the testing accuracy remained consistently higher
than 90%. Fig. 20 shows the CMs of the best damage detection results
achieved by both types of CNNs for all EDCs.

Upon examination of Fig. 20, it becomes apparent that the 2D
CNN, utilizing the scooter’s TFRs, outperforms the 1D CNN in terms
of accuracy. The 2D CNN demonstrated superior capability to accu-
rately predict footbridge conditions, particularly when the footbridge

11

was damaged. Compared to numerical simulations, which primarily
involve uncertainties stemming from Gaussian noise and artificial road
roughness, real-world scenarios introduce a higher level of complexity.
Consequently, the neural network faces additional challenges distin-
guishing the damage-sensitive features associated with the footbridge
from the scooter’s responses. The 2D CNN proved more sensitive to
footbridge damage, even considering only the scooter responses within
the last 5 s.

To gain a deeper understanding of the superior capabilities of
the scooter’s TFRs in detecting footbridge damage, it is essential to
examine the TFRs of the footbridge. When there is no mass on the foot-
bridge (EDC 0), Fig. 17 clearly shows that the forced vibrations of the
footbridge exhibit non-stationary characteristics, particularly evident
around 20 Hz and 38 Hz, in comparison to its free vibrations. Even
with the introduction of additional masses in EDCs 1-3, the footbridge
frequencies decreased, but the aforementioned non-stationary charac-
teristics of the VBI system will remain. Consequently, when sensors are
installed on passing scooters, the dynamic information regarding the
footbridge in the vibrations of the scooter continues to exhibit time-
varying behavior. This offers enhanced opportunities for the 2D CNN
to detect damage-sensitive features related to footbridges.

Furthermore, to better interpret the above theories, we utilized
Shapley Additive Explanations (SHAP), a commonly used tool for ex-
plaining the results of deep learning models. SHAP values are useful
for representing the contribution of each feature to the model’s pre-
dictions [66]. We selected one sample (or run) from each EDC to
interpret the factors used by the 2D CNN to determine the bridge health
conditions. Fig. 21 presents the SHAP values and probabilities for a TFR
image that the 2D CNN predicted as different EDCs. In this figure, the
red pixels (with positive SHAP values) increase the output probability
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Fig. 19. Loss and accuracy in field tests using different CNNs.

of the model, whereas the blue pixels (with negative SHAP values)
decrease it. Grey pixels have minimal influence on the determination
of the CNN model.

From the SHAP value images, it is evident that the majority of
significant features, indicated by positive or negative SHAP values, are
found within the lower frequency range of 0-30 Hz. This observation is
reasonable, considering that the detectable natural frequencies of the
footbridge were predominantly below 30 Hz, as shown in Fig. 14(b)
when impulse excitations (human jumping) are applied. Specifically,
for the sample in EDC 0, image 2 reveals that the significant features are
primarily distributed between 0.5-3.5 s, appearing as non-horizontal
lines and points. These features correspond to the peaks shown in
Fig. 14(b), which are associated with bridge dynamic information. The

12

2D CNN provided a 99.98% probability of classifying it as EDC 0.
Furthermore, it can be observed from images 4 and 5 that certain
features, represented by blue pixels, contribute to rejecting it being
regarded as EDCs 2 and 3, resulting in extremely low probabilities
assigned by the 2D CNN. However, by comparing images 3 and 8, it
becomes apparent that the TFRs of EDC 0 also contain vital features
that help predict it as EDC 1. Therefore, the 2D CNN assigned a higher
probability of 0.01%, although they were far from considering it as EDC
0.

For the sample in EDC 1, image 8 clearly shows that the time-
varying frequency responses around 1.5 s are the key identifying fea-
tures. These features are crucial for distinguishing it from EDC 2, as
depicted by the blue pixels in Fig. 9. Due to the similarity of image
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Fig. 21. Interpretation of the 2D CNN using TFRs (P: Probability).

8 to image 2 around 1.5 s, the 2D CNN gives a 0.08% probability of
regarding it as EDC 0. Additionally, for the sample in EDC 2, deter-
minate features were evident at 2.5 s and 4 s, displaying time-varying
characteristics. Turning to the sample in EDC 3, image 20 reveals that
the contributing features are located at approximately 4 Hz and 20 Hz.
While there is a similar trace in determinate features between 1.5 s
and 2.5 s in both EDC 0 (image 2) and EDC 3 (image 20), the higher-
frequency time-varying features in image 20 (around 1.5 s) facilitate
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classifying it as EDC 3 instead of EDC 0. From the above analysis, we
can observe that the determinate features utilized by the 2D CNN rely
on both time and frequency responses simultaneously. However, when
employing the frequency spectra of scooter vibrations, such as in the
1D CNN, the time-varying characteristics of the signals are disregarded,
making it challenging to capture crucial damage-sensitive features.
Based on the findings presented above, it can be concluded that for
the indirect method when accelerometers are installed on the passing
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vehicle, using their TFRs to train the 2D CNN can perform a superior
capability in damage detection. This is primarily owing to the non-
stationary nature of the response in a VBI system [67-69]; namely,
the vehicle and bridge frequencies vary during the interaction process.
Similar results regarding the superior capability of using TFRs have
also been explored in several studies when sensors are installed on
machines or structures when their responses exhibit heavy or slight
non-stationary characteristics [44,70,71]. Employing the FFT directly
on the vehicle vibrations ignores this time-varying characteristic and
is less suitable for damage detection. Therefore, in this study, the 2D
CNN was able to effectively capture key damage-sensitive features in
the vibrations of the scooter, resulting in a better performance than
the 1D CNN.

5. Conclusions and future work

This paper presents a framework for detecting and classifying foot-
bridge damage by analyzing micromobility responses equipped with
smartphones and deep learning techniques. The TFRs of the scooter’s
vibrations were innovatively utilized by the 2D CNN to predict the
footbridge’s damage severity in comparison with the 1D CNN using the
scooter’s frequency spectra. The effectiveness of the proposed frame-
work was evaluated using a numerical model of scooter-footbridge
interactions and real-world field tests. Several concluding remarks are
presented below.

(1) In numerical simulations, both the 1D and 2D CNNs demonstrate
a notable capability to detect and classify footbridge damage
severities using vibrations from passing scooters. The accuracy
achieved by the two CNNss is relatively high (91.7% and 93.5%,
respectively) even when the scooter’s responses are affected by
artificial road roughness and Gaussian noises.

In field tests with stochastic influence factors, the superior capa-
bility of the 2D CNN is evident compared to the 1D CNN. The
accuracy of damage classification decreases to 76.3% for the 1D
CNN, whereas the 2D CNN maintains a high accuracy of 92.1%
by utilizing the TFRs of the scooter’s vibrations.

The superior capability of the 2D CNN using TFRs can be at-
tributed to the non-stationary nature of the VBI system re-
sponses. Further investigations using SHAP values reveal that the
damage-sensitive features of the footbridge vary in the scooter’s
vibrations over time.

(2

—

3)

Although some promising findings are obtained, there are certain
limitations in the current research. One is the use of a smartphone
attached to the front wheel of a scooter, which is not commonly
employed in daily life and may impede its use in general engineering
applications. Additionally, this study did not consider factors such
as the effects of temperature, significant changes in road roughness,
and the presence of pedestrians despite their significance in long-term
footbridge monitoring. Thirdly, the proposed approach is supervised,
and the scarcity of damaged scenarios can limit its applications in
engineering. In our future studies, we will investigate the utilization of
generative and digital twin models to generate various types of damage
data for model training, as well as unsupervised learning without any
labeled data. Moreover, we aim to address limitations by investigating
the effectiveness of using smartphones on standing slabs and han-
dlebars and exploring the aforementioned influential factors. Owing
to easy access to visual inspection, it is also worthwhile conducting
comprehensive investigations into the combination of hybrid proposed
and vision-based methods for inspecting short-span footbridges.
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