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 A B S T R A C T

Graphene-based polymer nanocomposites show great potential for thermal management, but accurately pre-
dicting their thermal conductivity remains challenging due to multiscale structural complexity and parameter 
uncertainty. We propose an innovative approach integrating interpretable stochastic machine learning with 
multiscale analysis to predict the macroscopic thermal conductivity of graphene-based polymer nanocom-
posites. Our bottom-up framework addresses uncertainties in meso- and macro-scale input parameters. Using 
Representative Volume Elements (RVEs) and Finite Element Modeling (FEM), we compute effective thermal 
conductivity through homogenization. Predictive modeling is powered by the XGBoost regression tree-based 
algorithm. To elucidate the influence of input parameters on predictions, we employ SHapley Additive 
exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), providing insights into 
feature interactions and interpretability. Sensitivity analyses further quantify the impact of design parameters 
on material properties. This integrated method enhances prediction accuracy, reduces computational costs, 
and bridges data-driven and physical modeling, offering a scalable solution for designing advanced composite 
materials for thermal management applications.
1. Introduction

Nowadays Polymeric graphene-enhanced composites (PGECs) have 
attracted significant attention for their exceptional heat transfer prop-
erties like thermal conductivity, achieved by incorporating graphene 
as inclusion into polymers matrix. Graphene’s high intrinsic thermal 
conductivity dramatically enhances the thermal properties of polymers, 
which are typically poor heat conductors [1,2]. This enhancement 
is crucial for industries like electronic devices, aerospace and me-
chanical engineering, thermal management, automotive industry,civil 
engineering, and energy storage devices [3]. In electronic devices, 
PGECs improve heat dissipation, enhancing reliability and lifespan [4], 
while in energy storage, such as battery electrodes or supercapacitors, 
increasing energy storage capacity and device lifespan [5]. The excel-
lent heat transfer capability of graphene, due to its flexibility and large 
surface area, facilitates enhanced thermal conductivity in PGECs, which 
can be optimized by adjusting concentration of graphene fillers, the 
shape, and thee size [6]. The selection of the polymer matrix plays 
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a crucial role, with polyethylene-based PGECs showing high thermal 
conductivity resulting from the low thermal resistance at the interface 
between the filler-matrix.

To understand the underlying mechanisms, we employ multi-scale 
modeling, a computational approach that integrates fine and coarse 
scales to connect properties and study material behavior. This method 
bridges the gap from micro-structures to marco behaviors in materials, 
from the atomic level to the macroscopic level [7]. This approach 
facilitates the understanding of how microscopic defects can propa-
gate to affect macroscopic performance, the role of grain boundaries 
in determining thermal and electrical properties, and the interaction 
between different phases within a composite material. This compre-
hensive multiscale analysis provides valuable insights for designing 
materials with tailored properties for specific applications.

Considering the inherent uncertainties in properties, materials be-
haviors, manufacturing processes, and environmental conditions,
stochastic multiscale modeling is essential. These uncertainties can con-
tribute to inconsistency in material performance and behavior, affecting
https://doi.org/10.1016/j.compstruct.2025.119292
Received 16 January 2025; Received in revised form 2 April 2025; Accepted 15 M
vailable online 3 June 2025 
263-8223/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
ay 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/compstruct
https://www.elsevier.com/locate/compstruct
https://orcid.org/0000-0002-7171-1219
https://orcid.org/0000-0002-5760-2147
https://orcid.org/0000-0002-3899-7008
https://orcid.org/0000-0002-1444-6017
https://orcid.org/0000-0002-0276-806X
https://orcid.org/0000-0002-8704-8538
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
https://github.com/jackylbk/ThermalConductivity_PGECs_XAI
mailto:timon.rabczuk@uni-weimar.de
https://doi.org/10.1016/j.compstruct.2025.119292
https://doi.org/10.1016/j.compstruct.2025.119292
http://creativecommons.org/licenses/by/4.0/


B. Liu et al. Composite Structures 370 (2025) 119292 
the structures’ safety and reliability in engineering. Stochastic mul-
tiscale modeling helps in identifying critical factors contributing to 
material failure, optimizing material design for enhanced durabil-
ity, and developing more robust engineering practices. By integrating 
probabilistic data with physical modeling, this method enhances the 
predictability and resilience of materials used in complex engineering 
applications, ultimately leading to safer and more efficient designs.

Various studies have explored the use of graphene and its deriva-
tives to enhance the thermal properties of polymeric materials. Luo 
et al. conducted a molecular dynamics study to investigate the en-
hancement of thermal energy transport across graphene/graphite and 
polymer interfaces [8]. They found that the addition of graphene 
improved the thermal conductivity of the composite material. Zain-
ul-abdein et al. presented an experimental and computational inves-
tigation of thermal conductivity enhancement in a bakelite-graphite 
composite [9]. The study demonstrated the effect of graphite addition 
on the effective thermal conductivity of the composite material. Simi-
larly, Zhang et al. explored the mechanical and thermal properties of 
hierarchical composites enhanced by pristine graphene and graphene 
oxide nanoinclusions [10]. In a study by Wang et al. silver nanoparticle-
deposited boron nitride nanosheets were used as fillers in polymeric 
composites to enhance thermal conductivity [11]. The results showed 
that the composite with silver nanoparticle-deposited boron nitride 
nanosheets outperformed the one with boron nitride nanosheets alone, 
due to lower thermal contact resistance among the interfaces. Olowo-
joba et al. reported on the thermal and mechanical properties of in 
situ thermally reduced graphene oxide/epoxy composites [12]. The 
study highlighted the potential of graphene as a filler material in 
the development of multifunctional polymeric composites. Guo et al. 
prepared graphene/poly(vinylidene fluoride) composites to improve 
thermal conductivity, which could lead to the further development of 
thermal conductive polymeric materials [13]. Fang et al. proposed a 
method to bond graphene foam with polydimethylsiloxane to fabricate 
composites with high thermal and mechanical properties [14]. The 
results showed considerable improvement in thermal conductivity and 
insulativity, making these composites suitable for heat management 
in electronic devices. Tu et al. reported on the enhancement of latent 
heat and thermal conductivity in polyethylene glycol-based composites, 
demonstrating significantly improved thermal conductivities [15]. Fi-
nally, Azizi et al. investigated the performance improvement of EPDM 
and EPDM/silicone rubber composites using modified fumed silica, 
titanium dioxide, and graphene additives [16]. The incorporation of 
these additives led to a significant increase in thermal stability and 
thermal conductivity of the composites. Overall, these studies highlight 
the potential of graphene-enhanced composites to improve thermal 
conductivity in polymeric materials.

The thermal conductivity of composites at the macroscopic level 
is widely acknowledged to be greatly affected by various factors. For 
instance,Shokrieh et al. introduced a stochastic multiscale model for 
CNT composites, considering uncertain parameters like CNT length, 
orientation, agglomeration, curvature, and dispersion [17]. Similarly, 
Vu-Bac et al. have contributed [18], and we proposed an uncertainty 
analysis method for PNC stochastic modeling [19–22].

While stochastic multiscale modeling is capable of directly predict-
ing the intended values, it is computationally expensive, especially 
when conducting extensive simulations for a wide range of input pa-
rameters or during iterative optimization processes. To mitigate the 
high computational burden associated with stochastic multiscale mod-
els, surrogate methods have been devised for propagating uncertain 
parameters across scales [23,24]. Machine learning has emerged as 
a powerful surrogate models tool in the field of composite materials, 
offering new perspectives and accelerating the discovery of functional 
composites [25]. Gu et al. applied machine learning algorithms to 
predict mechanical properties of composites, such as toughness and 
strength, showcasing the efficiency and accuracy of this approach [26]. 
2 
Similarly, Wei et al. took a different approach by using machine learn-
ing methods to predict the effective thermal conductivities of composite 
materials, deviating from traditional methods based on physical un-
derstanding of heat transfer mechanisms [27]. Chen et al. summarized 
recent progress in the applications of machine learning to composite 
materials modeling and design, highlighting the potential of different 
ML algorithms to accelerate composite research [28]. Dabetwar et al. 
focused on damage classification of composites using machine learning 
techniques, aiming to improve condition monitoring and health man-
agement strategies of composite materials [29]. Khan et al. reviewed 
the use of machine learning for damage assessment of smart composite 
structures, emphasizing the importance of discriminative features and 
various machine learning algorithms for detecting, quantifying, and lo-
calizing damage [30]. Marani et al. utilized machine learning to predict 
the compressive strength of PCM-integrated cementitious composites, 
achieving superior prediction accuracy and providing insights into 
materials science aspects [31]. Kharb et al. applied machine learning 
to analyze and predict the erosion behavior of silicon carbide rein-
forced polymer composites, using SVM and MLR approaches to validate 
optimized response characteristics [32]. Furtado et al. introduced a 
methodology to generate design allowables of composite laminates us-
ing machine learning, focusing on Legacy Quad Laminates and double-
double laminates for composite aerostructures [33]. In our previous 
research, we also used a hierarchical multi-scale model with physical 
laws (Physics-Informed), so called Physics-Informed Neural Networks 
(PINNs), to obtain thermal properties and optimize material design by 
linking microscale phenomena with macroscale properties [34].

While these studies primarily evaluate the performance of algo-
rithms and models, they significantly lack in explaining the internal 
mechanisms and interpretability. The models are unable to scientif-
ically explain their predicted results. A common critique of these 
data-driven techniques in properties prediction and materials design is 
their characterization as black-box models, lacking transparency and 
failing to offer understanding into the foundational physical processes 
that control the issue under examination. Researchers are striving to 
develop more transparent machine learning (ML) models to better 
understand their relationships and sensitivities among different scales 
with input and output parameters. One effective method is employ-
ing explainable techniques in AI w.r.t XAI, which can strive towards 
enhance the interpretability and transparency of data-driven training 
models [35]. A notable approach in this realm is SHAP (SHapley Ad-
ditive exPlanations), which provides local explanations for predictions 
by quantifying the contribution of each feature compared to the dataset 
average. Another valuable method in Explainable AI (XAI) is LIME 
(Local Interpretable Model-agnostic Explanations), which generates in-
terpretable explanations for individual predictions by approximating 
the local decision boundary of any complex model with a simpler, 
interpretable model [36]. Those methods not only enhance the in-
terpretability of machine learning models but also facilitates deeper 
insights into how individual features influence model predictions across 
diverse applications and datasets. This enables us to handle larger 
datasets and explore parameter spaces that may be computationally 
prohibitive for direct stochastic modeling as well as better interpreta-
tion of ML models and is becoming increasingly popular in practice [37,
38].

This study introduces a novel approach by incorporating explainable 
AI (XAI) techniques such as SHAP (Shapley Additive Explanations) and 
LIME (Local Interpretable Model-agnostic Explanations). These meth-
ods enhance the transparency of the machine learning models, allowing 
for deeper insights into how different input features influence the 
predicted thermal conductivity. This shift in focus from pure prediction 
accuracy towards interpretable and transparent models is a key novelty 
of this work.

Furthermore, by combining stochastic multiscale modeling with 
machine learning and explainable AI, this research presents a compre-
hensive approach that not only predicts thermal conductivity with high 
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accuracy but also provides actionable insights into the factors driving 
these predictions. This step towards transparent and interpretable mod-
els represents a significant advancement over previous methodologies, 
offering better control and understanding of material design processes 
for PGECs.

Based on the above highlights, this study aims to pioneer a ma-
chine learning model with uncertainty analysis in a multi-scale ap-
proach that provides precise predictions of the thermal conductivity of 
nanocomposites containing Polymer and graphene. It seeks to establish 
a clear and interpretable quantitative relationship by leveraging ad-
vanced techniques such as the SHAP and LIME methods and sensitivity 
analysis. By integrating these approaches, the research aims to enhance 
understanding of how different factors influence thermal conductivity 
in PGECs, thereby advancing the optimization and design of these 
innovative materials for various industrial applications. Building upon 
our previously published paper [39], this study at first enhances the 
interpretability of the data model using SHAP and then ally LIME to 
explore the interpretability and finally introduces sensitivity analysis 
to quantify the significance of the physical model. These additions 
bolster the credibility of the overall model predictions. The article 
outlines the general methodology (Section 2), introduces materials 
(Section 3), discusses data-driven machine learning models and inner 
interpretability (Section 4), presents simulation analysis and numerical 
results (Section 5), and concludes (Section 6).

2. Methodology of research

We present a novel machine learning-based multi-scale stochastic 
model represents a significant advancement in computational model-
ing and analysis. By integrating stochastic multi-scale modeling and 
machine learning methodologies, we offer a comprehensive framework 
capable of addressing complex phenomena spanning various length 
scales. The hierarchical structure of our approach, as illustrated in Fig. 
1, facilitates seamless connections between meso and macro scales. 
Beginning with a bottom-up paradigm, we ensure the robust propaga-
tion of information while effectively managing uncertainties inherent 
in multi-scale systems. This hierarchical framework orchestrates the 
integration of outputs from finer scales as inputs for subsequent coarser 
scales, enabling a holistic understanding of the system under study. 
Moreover, the utilization of machine learning algorithms adds a layer 
of sophistication to our model, empowering it to analyze and interpret 
outputs from the stochastic multi-scale framework with unprecedented 
depth and accuracy. By leveraging the capabilities of machine learning, 
we unlock new avenues for insight generation and knowledge discovery 
within complex multi-scale systems.

This comprehensive methodology encompasses three pivotal stages:
(1) Bottom-up modeling: Beginning with detailed modeling at 

the fine scale, ensuring comprehensive understanding and information 
transfer.

(2) Stochastic modeling: Incorporating stochastic elements to cap-
ture inherent uncertainties and variations across scales.

(3) Data-driven methods: Leveraging machine learning techniques 
to analyze and extract meaningful insights from the complex multi-
scale data generated.

The overall methodological framework is illustrated in Fig.  2. The 
framework integrates stochastic multiscale modeling with explainable 
machine learning techniques for accurate and interpretable prediction 
of the effective thermal conductivity of polymer nanocomposites.

3. Stochastic multi-scale modeling

3.1. Multi-scale approach

A hierarchical multiscale method is employed in a bottom-up ap-
proach, where the materials information is transferred progressively 
from finer scales to coarser scales. This method ensures that detailed 
3 
data from microscale analyses inform and refine the models at meso 
and macro scales. Fig.  3 illustrates the flowchart of this process. In 
the following sections, we will describe the models used at each length 
scale, detailing how they integrate and contribute to the overall mul-
tiscale framework. This approach allows for a comprehensive under-
standing of the material properties, ensuring that microscale phenom-
ena accurately influence the larger scale behaviors and predictions.

We apply continuum models in meso-scale with Representative 
Volume Elements (RVEs). This multi-scale modeling approach can ef-
fectively represent properties by incorporating a limited number of 
inclusions/fillers inside cubic matrix. A commonly used cubic RVE, de-
picted in Fig.  4, incorporates graphene fillers, which are approximated 
as disks. To automate the generation of these RVE models, we employ 
Abaqus platform integrated with a custom Python script. This script, 
which operates according to a three-dimensional non-collision rules 
implemented by C++ programming [6], ensures accurate placement 
and distribution of the fillers within the RVE. The positioning of the 
graphene fillers is determined according to the probability density 
functions (PDFs) of the input parameters, ensuring a realistic and sta-
tistically representative model. This integration of advanced software 
and custom algorithms allows for precise modeling and analysis of the 
composite material, ultimately enhancing the accuracy and reliability 
of the multi-scale simulation results.

To ensure physical consistency and eliminate artificial boundary 
effects during the finite element simulations of the RVE, periodic 
boundary conditions (PBCs) are applied. These boundary conditions are 
essential for capturing the behavior of an infinite periodic composite 
and for accurate homogenization of the material’s effective thermal 
properties.

In the mechanical domain, corresponding nodes on opposite faces 
of the cubic RVE are constrained such that their displacements remain 
compatible, thereby ensuring continuity across boundaries. For the 
thermal simulations, a uniform heat flux is applied to one face of 
the cube, while the opposite face receives an equal and opposite flux, 
resulting in a consistent temperature gradient across the domain.

The implementation of PBCs is automated through a custom Python 
script integrated within the Abaqus environment. The script uses multi-
point constraint (MPC) techniques to apply the necessary coupling 
between node pairs on opposite faces of the RVE. This automated 
framework supports high-throughput RVE generation and simulation 
with varying filler distributions, aspect ratios, and volume fractions.

At the meso-scale, we study graphene sheet agglomerations and 
dispersions, common with high aspect ratios and volume fractions. To 
quantify agglomeration, we use a two-parameter method generating 
spheres as gathered zones (Fig.  5), labeled as ‘inclusions’, dividing the 
space into 𝑉 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 and 𝑉 𝑚𝑎𝑡𝑟𝑖𝑥
𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 [40]: 

𝑉𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 = 𝑉 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛
𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 + 𝑉 𝑚𝑎𝑡𝑟𝑖𝑥

𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 (1)

where the graphene fillers located in the matrix and represented by the 
terms 𝑉 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 and 𝑉 𝑚𝑎𝑡𝑟𝑖𝑥
𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒, respectively.

Besides, the degree to which the graphene fillers cluster together 
within the composite material and the uniformity of filler distribution 
throughout the matrix should also be considered. So we define them in 
two indices — agglomeration index 𝜉 and the dispersion index: 

𝜉 =
𝑉𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

𝑉
, 𝜁 =

𝑉 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛
𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒

𝑉𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒
(2)

The agglomeration shown in an index 𝜉 indicates the filler’s volume 
fraction with respect to cubic RVE’s volume size, serving as an indicator 
of how much of the composite’s volume is occupied by graphene fillers. 
The dispersion presented in an index 𝜁 measures the graphene sheets’ 
volume size within fillers with respect to the plates’ volume, reflecting 
degree of dispersion of the graphene within the inclusions. Uniform 
disk distribution, where there is no agglomeration, is observed if 𝜉 = 𝜁 . 
This equality signifies that the graphene fillers are evenly dispersed 
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Fig. 1. Multi-scale modeling scheme.
Fig. 2. Integrated framework combining stochastic multiscale modeling and explainable machine learning.
throughout the RVE. Conversely, if 𝜉 > 𝜁 , it suggests an uneven distri-
bution of disks within the RVE, indicating that the graphene fillers are 
clustering together, leading to agglomeration. This agglomeration can 
negatively affect the composite’s properties, such as reducing thermal 
conductivity and mechanical strength [41,42].

The initial step in determining an appropriate RVE size involves 
employing data boosting called sample enlargement method (SEM). 
The SEM technique entails progressively boosting the cubic elements’ 
4 
size until the effective thermal conductivity under homogenization 
converges to a predefined value. Averaging the thermal conductivity 
data across numerous samples can be regarded as the convergence 
criterion, shown: 

⟨𝑅⟩ = 1
𝑀

𝑀
∑

𝐾=1
𝑅(𝐾) (3)
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Fig. 3. Multi-scale modeling flowchart.
In this context, this criterion ensures that the averaged homogenized 
thermal conductivity has stabilized, indicating that the RVE size is 
sufficiently large to capture the material’s representative behavior. 
Regarding the equation, 𝑅(𝑘) donates the current data e within the 𝑘th 
RVE, with 𝑀 denoting the entire amount of RVEs. After averaging the 
ensemble, it is essential to meet a convergence criterion to establish an 
appropriate size as representative: 
|

|

|

|

⟨𝑅(𝐾+1)
⟩ − ⟨𝑅(𝐾)

⟩

⟨𝑅(𝐾)
⟩

|

|

|

|

< 𝑇𝑜𝑙 = 1% (4)

Here in this equation, 𝑅(𝑘+1) contributes to the 𝑘+1th representative 
volume element. The convergence is typically assessed by monitoring 
the changes in thermal conductivity values as the RVE size increases 
and ensuring that these changes fall below a predefined threshold. This 
rigorous process guarantees the accuracy and reliability of the RVE 
model, making it a critical step in multiscale modeling and simulation.

Then we start to discuss the heat transfer problem which is shown 
below and governed by 

𝐶𝑓
𝜕𝜃
𝜕𝑡

+ ∇ ⋅ 𝒒 −𝑄 = 0 (5)

In this equation, 𝜃 denotes the absolute temperature reflecting the 
material’s thermal state. 𝐶𝑓  is the heat capacity quantifying the inten-
sity and distribution of internal heat sources. 𝐶𝑓  is the heat capacity 
determining the material’s ability to store thermal energy. 𝒒 is the heat 
flux vector describing the rate and direction of heat flow within the 
material.
5 
Due to the quasi-steady cases, by simplifying the analysis, the time-
dependent term 𝐶𝑓

𝜕𝜃
𝜕𝑡  is typically disregarded. By substituting Fourier’s 

law inside, we can derive a more manageable form for steady-state heat 
transfer scenarios: 

𝑑𝑖𝑣(𝜅∇𝜃) +𝑄 = 0 𝑖𝑛 𝛺 (6)

where 𝜅 represents the thermal conductivity, 𝜃 is the temperature 
field, and 𝑄 denotes the internal heat source. The natural boundary 
conditions are defined as: 

𝑞𝑛 = −𝒒 ⋅ 𝒏 = 𝑞 𝑜𝑛 𝛤𝑞 (7)

where 𝒏 is the normal vector to the boundary 𝛤𝑞 , and 𝑞 is the specified 
heat flux at this boundary.

To derive the weak form of this equation, we multiply the governing 
equation by a test function 𝛿𝜃 and integrate over the domain 𝛺. This 
process transforms the partial differential equation into an integral 
form that is more suitable for numerical methods such as the finite 
element method (FEM). The weak form is expressed as follows: 

∫𝛺
𝜅∇𝜃 ⋅ ∇𝛿𝜃𝑑𝛺 = −∫𝛤𝑞

𝛿𝜃𝑞𝑑𝛤 + ∫𝛺
𝛿𝜃𝑄𝑑𝛺 ∀𝛿𝜃 ∈ 𝜈0 (8)

Here, 𝜃 is the trial function representing the temperature field, and 𝛿𝜃
is the test function belonging to the function space 𝜈0. This formulation 
ensures that the temperature distribution satisfies the heat transfer 
equation in an average sense across the domain.
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Fig. 4. The RVE cube and meshing.

Fig. 5. The agglomeration and dispersion in the cubic RVE.

Fig.  6 illustrates the application of two distinct preset heat fluxes 
from each single one direction across the representative cube, gener-
ating a corresponding temperature gradient. Then, we can obtain the 
homogenized effective thermal conductivity of composite by employing 
Fourier’s law. Fourier’s law is given by: 

𝐪 = −𝜿 ⋅ ∇𝜃 (9)

with 𝜿 =

⎧

⎪

⎨

⎪

⎩

𝜅𝑥𝑥 0 0
0 𝜅𝑦𝑦 0
0 0 𝜅𝑧𝑧

⎫

⎪

⎬

⎪

⎭

(10)

In a composite material, the macroscopic thermal conductivity is de-
termined by ensuring 𝜅𝑥𝑥 = 𝜅𝑦𝑦 = 𝜅𝑧𝑧, reflecting isotropic behavior [6]. 
This is achieved by imposing boundary conditions at different cube’s 
edges and solving heat equation’s weak form. The composite conduc-
tivity 𝜅 obtained from this process serves as the meso-scale output, 
providing essential information for further multiscale modeling and 
analysis. 

At the macroscopic scale, we adopt a larger, homogenized struc-
ture to account for uncertainties. This process discretizes the entire 
material domain and randomly distributes cubes with varying thermal 
properties within the macroscale domain, each representing discretized 
RVEs [43,44]. These cubes are derived from the mesoscale simulation, 
throughout the macroscale terrain, as shown in Fig.  7. While the Finite 
6 
Fig. 6. Applying heat flux in both sides.

Fig. 7. The material region in macro-scale modeling.

Element Method (FEM) could theoretically be applied at the macro-
scale, we opt for the rule of mixture due to its computational efficiency. 
The Voigt model is employed to interconnect multiple Representative 
Volume Elements (RVEs). This approach is characterized by: 

𝑘eff = 𝑘̄ =
∑

𝑖 𝑘𝑖𝑉𝑖
∑

𝑖 𝑉𝑖
(11)

In this scenario, 𝑘eff is the macroscopic effective thermal conductivity; 
𝑘𝑖 represents the thermal properties of the 𝑖th RVE cube. The weighting 
factor 𝑉𝑖, denoted as the volume fraction, influences the contribution 
of each cube. 

The Voigt model is employed here to calculate the macroscopic 
effective thermal conductivity because it offers a computationally effi-
cient method that assumes uniform temperature gradients across differ-
ent phases, making it suitable for composite materials with stochastic 
multiscale properties. This method estimates an upper bound for the ef-
fective thermal conductivity, making it suitable for composite materials 
like ours, where each RVE has varying thermal properties. While more 
detailed methods like the Finite Element Method (FEM) could provide 
higher accuracy, the Voigt model is preferred for its simplicity and 
efficiency in large-scale, uncertainty-driven simulations. The computa-
tional efficiency is crucial due to the stochastic nature of our multiscale 
modeling approach. By leveraging the volume fractions of each RVE, 
the Voigt model provides a balance between computational cost and 
accuracy, making it ideal for the stochastic nature of the multiscale 
modeling used in this study.

3.2. Stochastic modeling

At the material properties scale, variations in thermal conductivity, 
tensile strength, and elasticity can significantly affect the performance 
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of the final product. At the microstructural level, the arrangement and 
distribution of grains, phases, and defects within the material can lead 
to unpredictable behavior under stress or thermal conditions [45–47]. 
Furthermore, manufacturing processes introduce another layer of un-
certainty, as variations in processing parameters such as temperature, 
pressure, and cooling rates can result in inconsistencies in material 
properties and microstructures. So those uncertainties across various 
scales, including material properties, microstructures, and manufactur-
ing processes are examined in this study shown in Table  1. Meanwhile, 
Boundary conditions are handled in a deterministic manner to maintain 
consistency and predictability. In contrast, stochastic analysis is em-
ployed for uncertain input parameters by assigning probability density 
functions (PDFs) to each parameter, which outline their means and 
variances.

Before starting stochastic modeling, a large number of data samples 
need to be obtained through reasonable sampling methods. Here we 
apply the Latin Hypercube Sampling (LHS) method to obtain dataset 
which is a statistical technique used to efficiently model the stochastic 
behavior of systems with multiple uncertain input parameters [48]. It 
aims to enhance the accuracy and efficiency of sampling compared 
to traditional methods such as Monte Carlo Sampling [49]. The LHS 
method works by generating a preset design matrix of size 𝑁 × 𝑚, 
including 𝑚 input parameters as well as 𝑁 denotes intervals that 
divide the cumulative probability curve. Each input parameter’s range 
is divided into 𝑁 equally probable intervals, ensuring that each interval 
is sampled exactly once. This stratification guarantees that the entire 
range of each input parameter is explored thoroughly. The standard 
deviation, mean, and variance of the output parameters are obtained by 
conducting those probability density functions (PDFs) and then provid-
ing a statistical description of the system’s behavior under uncertainty. 
Subsequently, the design matrix containing a large number of data sets 
generated by LHS is imported into the materials model to obtain the ac-
tual target outcome values, following the method described by [50]. To 
further alleviate computational expenses associated with uncertainty 
analysis, surrogate models are employed. These surrogate models, often 
constructed using machine learning techniques or simplified physical 
approximations, serve as efficient proxies for the more complex and 
computationally intensive physical models. By providing rapid evalu-
ations, surrogate models allow for extensive exploration of the input 
parameter space without the need for repeated, costly simulations of 
the full physical model. 

4. Data-driven method

4.1. Materials and dataset preparation

The database for machine learning should contain at least training 
set and test set. In this case, the raw materials from dataset, obtained 
from FE simulations in physical models at the meso-scale in RVE and 
MATLAB macroscopic numerical analysis. All those results are divided 
into an training set with 80% portion and a 20% test set. Normalization 
of this data is essential to standardize it, reducing computational costs 
and enhancing robustness. The performance and accuracy of the models 
are assessed using metrics like the root mean square error (RMSE), 
coefficient of determination (𝑅2), and mean absolute error (MAE), all 
of which are derived from model residuals, shown below: 

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑌𝑟𝑖 − 𝑌𝑝𝑖)2 (12)

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑌𝑟𝑖 − 𝑌𝑝𝑖)2
∑𝑁

𝑖=1(𝑌𝑟𝑖 − 𝑌𝑚𝑒𝑎𝑛)2
(13)

𝑀𝐴𝐸 =

∑𝑁
𝑖=1

|

|

|

𝑌𝑟𝑖 − 𝑌𝑝𝑖
|

|

|

𝑛
(14)

Lastly, interpretability need to be considered and discussed accord-
ing to previous steps. Shapley Additive Explanations as an interpretable 
7 
approach is applied to make transparent and explain the model predic-
tions by providing a unified measure of the contribution of each input 
parameter to the output predictions, allowing for a clear understanding 
of how different factors influence the model’s behavior, focusing on 
feature importance and Shapley values. By assigning Shapley values 
to each feature, SHAP quantifies their individual impact, highlighting 
which parameters are most critical in driving the model’s decisions.

4.2. Cross validation and hyper-parameters tuning

After data preparation, It is also necessary to consider parameters 
optimization during model training. Cross-validation (CV) is pivotal in 
machine learning approach, offering a reliable method for hyperpa-
rameter estimation and model construction. By segregating data into 
training and validation sets, CV guards against overfitting, ensuring the 
model’s generalizability. Among CV techniques, K-Fold cross-validation 
reigns supreme. Here, the dataset is divided into 𝑘 subsets or ‘folds’, 
with the model trained iteratively on 𝑘−1 folds and validated on the re-
maining fold. This iterative process yields a comprehensive evaluation 
of model performance. By aggregating metrics across folds, K-Fold CV 
provides a robust estimate of model efficacy on unseen data, especially 
beneficial for smaller datasets. Moreover, K-Fold CV helps alleviate bias 
and variance by testing the model across multiple subsets, enhancing 
its reliability in real-world applications.

Hyper-parameter tuning is a critical aspect of machine learning 
model development, where optimal values for parameters that cannot 
be learned during training, known as hyper-parameters, are selected. 
This process significantly impacts model accuracy and performance. 
However, it can be challenging and time-consuming due to the iterative 
trial-and-error nature of identifying the best hyper-parameter values. 
Despite these challenges, hyper-parameter tuning is essential for max-
imizing model efficacy by carefully balancing model complexity and 
performance. In this study, we utilize Particle Swarm Optimization 
(PSO) for hyper-parameter tuning, a method that has shown success in 
previous research. The PSO algorithm continuously minimizes the Sum 
of Squared Errors (SSE) during the tuning process, employing a 10-fold 
cross-validation approach to ensure robustness [20,21]. The equation 
is present: 

𝑆𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑌𝑟𝑖 − 𝑌𝑝𝑖)2 (15)

where 𝑁 is the number of output parameters; 𝑌𝑟𝑖 is the required output 
parameters and 𝑌𝑝𝑖 is the predicted 𝑖th values. In this study, a swarm 
size of 450 is selected based on our previous study, as well as the 
inertia weight 𝜔 set to 1 and the cognitive and social coefficients 𝑐1
and 𝑐2 set to 2.0 each, as referenced in [21]. These parameters are 
chosen to optimize the balance between exploration and exploitation in 
the optimization process, ensuring effective convergence to the global 
optimum while maintaining diversity within the swarm.

4.3. Regression-tree-based approach: XGBoost

The divide-and-conquer strategy is applied in tree-based model to 
iteratively split data based on if-then conditions, with key elements 
including tree depth, complexity, and segmentation points. However, 
one single regression tree often fails to capture the full data complexity, 
leading to potential overfitting or underfitting issues. To address this, 
XGBoost, an advanced ensemble learning method, combines multi-
ple trees to enhance robustness and accuracy, incorporating regular-
ization techniques and efficient processing to manage complex data 
interactions and high-dimensional feature spaces.

XGBoost, short for eXtreme Gradient Boosting, stands as a cor-
nerstone in modern machine learning, renowned for its exceptional 
performance in predictive tasks across diverse domains. Leveraging 
a gradient boosting framework coupled with decision trees, XGBoost 
offers unparalleled accuracy and efficiency, making it a popular choice 
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Table 1
Model uncertainties.
 Scale Inputs Mean Standard deviation Type of distribution Sources  

 Meso Thermal conductivity of fillers 3978.85 580.79 Suchismita, et al. [51]  

 Thermal conductivity of Matrix 0.252806 0.098237 A. Moisala et al. [52]  

 Interface resistance 20.2356 5.9294 M. Freitag et al. [53]  

 Aspect ratio 59.1911 123.2185 Khoa Bui et al. [54]  

 Agglomeration index 0.55105 0.26127 Nam Vu-Bac et al. [18] 

 Dispersion index 0.55010 0.26154 Nam Vu-Bac et al. [18] 

 Macro Volume fraction 0.054164 0.025811 M. Shokrieh, et al. [17] 
among data scientists and researchers alike. In this section, we delve 
into the methodology behind XGBoost, exploring its robustness, versa-
tility, and ability to handle complex datasets. We detail its underlying 
principles, parameter optimization strategies, and model evaluation 
techniques, showcasing how XGBoost empowers practitioners to tackle 
real-world challenges effectively. Through this comprehensive intro-
duction, we aim to provide insights into the power and potential of XG-
Boost in driving advancements in predictive modeling and data-driven 
decision-making.

In recent years, XGBoost has revolutionized the landscape of ma-
chine learning with its unparalleled performance and versatility. Stand-
ing at the forefront of predictive modeling techniques, XGBoost com-
bines the strengths of gradient boosting algorithms with decision trees, 
unleashing a formidable tool for data analysis and predictive tasks [55]. 
With its ability to handle diverse datasets, ranging from structured 
to unstructured data, XGBoost has become a go-to choice for data 
scientists and researchers across industries.

In this section, we embark on a journey to uncover the intricate 
mechanisms that drive XGBoost’s success. We delve into its underlying 
principles, which enable it to seamlessly blend the predictive power 
of multiple weak learners into a robust ensemble model. Through a 
detailed exploration of XGBoost’s architecture and optimization strate-
gies, we shed light on how it efficiently learns complex patterns from 
data while mitigating overfitting. Alg. 1 shows a pseudo code of the 
XGBoost. Moreover, XGBoost’s interpretability and feature importance 
analysis capabilities provide invaluable insights into model behavior, 
empowering practitioners to understand the driving factors behind 
predictions. We explore techniques for interpreting XGBoost models, 
such as SHAP (SHapley Additive exPlanations) values and partial de-
pendence plots, which enhance transparency and trust in the model’s 
decisions. Furthermore, we discuss XGBoost’s scalability, illustrating its 
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ability to handle large-scale datasets with ease, making it suitable for 
real-world applications where speed and efficiency are paramount.

Through this comprehensive exploration, we aim to showcase not 
only the technical prowess of XGBoost but also its transformative 
impact on data-driven decision-making and predictive analytics. Join 
us as we unravel the power of eXtreme Gradient Boosting and unlock 
new possibilities in the realm of machine learning. 

4.4. Explainable artificial intelligence

Explainable artificial intelligence (XAI), or other words
Interpretable machine learning (IML), delves into understanding and 
clarifying the decision-making processes of machine learning models, 
particularly crucial when these decisions have far-reaching implica-
tions [56,57]. Through various techniques such as feature importance 
analysis, model visualization, and rule-based models, IML methods 
enhance transparency and interpretability. By instilling trust in the 
models, these methods facilitate the utilization of machine learning in 
critical domains, ensuring informed decision-making [58,59].

4.4.1. Shapley Additive Explanations
Shapley Additive Explanations, known as SHAP, is a sophisticated 

method for explaining machine learning methods by assigning impor-
tance values to each feature based on its contribution to the model’s 
predictions. Derived from cooperative game theory, SHAP values pro-
vide a fair and consistent way to attribute the output of the model to 
its input features, ensuring that the sum of the SHAP values matches 
the model’s prediction [60]. Positive SHAP values indicate that the 
feature contributes positively to the prediction, pushing the prediction 
higher than the baseline. Conversely, negative SHAP values indicates 
that the feature contributes negatively, pulling the prediction lower 
than the baseline. This approach not only quantifies feature importance 
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Algorithm 1  XGBoost
Require: The number of iterate 𝐾;

 The Depth of trees 𝐷;
Ensure: Prediction 𝑌 (𝑥)
1: function XGBoost(data, labels, num_rounds, max_depth, learn-
ing_rate):

2: Initialize model:
3: EnsembleModel = [ ]
4: BaseModel = BaseDecisionTree()
5: for round = 1 to num_rounds do
6:  Compute gradient and hessian for each data point:
7:  for round = 1 to num_rounds do
8:  Compute gradient and hessian using labels[i] and predicted 
label from ensemble model

9:  Endfor
10:  Fit base decision tree to gradient and hessian:
11:  BaseModel.fit(data, gradient, hessian, max_depth)
12:  Compute shrinkage:
13:  shrinkage = learning_rate / (1 + round)
14:  Update ensemble model:
15:  EnsembleModel.append(BaseModel)
16:  Update predicted labels using the newly added decision tree
17: Endfor
18: return EnsembleModel

Fig. 8. The framework of SHAP additive explanations.

Fig. 9. The framework of Local Interpretable Model-agnostic Explanations.

but also offers insights into how each feature influences the model’s 
decisions, making it a powerful tool for understanding and explaining 
complex machine-learning models. This framework of SHAP value and 
components is depicted in Fig.  8. 

The SHAP method is a versatile tool for explaining the outputs of 
any data-driven technique such as machine learning, regardless of the 
learning strategy or training algorithm used. It employs a sampling-
based strategy to compute SHAP values, which determine the indi-
vidual contribution of every single feature to the entire outcomes by 
generating numerous combinations of features in input parameters 
and computing predictions individually. This approach provides both 
global and local interpretability, making it especially valuable in fields 
requiring high transparency. [61]. These contributions are quantified 
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as Shapley values, ultimately defining the explanation model 𝑔(𝑥0): 

𝑔
(

𝒙′
)

= 𝜑0 +
𝑀
∑

𝑖=1
𝜑𝑖𝒙′𝑖 (16)

In this scenario, 𝑀 denotes the features amount in the domain, 
while 𝜑0 remains constant if entire input values are zero. Each feature 𝑖
includes an Attribution value indicated by 𝜑𝑖. 𝒙′ refers to the simplified 
input parameters’ vector derived from initial database’s 𝑥 variables. 
Employing game theory principles, the SHAP method assigns the contri-
bution of every single feature to the outcomes depicted by the Shapley 
value. 𝑥0 represents a specific input instance for which the SHAP values 
are calculated. 𝑔(𝑥0) defines the explanation model that quantifies the 
contribution of each feature to the prediction made for this particular 
instance 𝑥0. SHAP values provide insights on both a global and local 
level, with 𝑥0 highlighting the model’s interpretability for individual 
samples.

Those details regarding interpretation need to fulfill specific criteria, 
which include:

∙ Local accuracy: Ensuring local accuracy entails that the explana-
tion model’s output aligns with the initial data model’s values for the 
given input parameters under examination: 

𝑔
(

𝒙′
)

= 𝜑0 +
𝑀
∑

𝑖=1
𝜑𝑖𝒙′𝑖 = 𝜑(𝒙) (17)

Here, 𝜑(𝒙) denotes preset initial ML data model, such as decision 
tree-based data-driven model in this part.

∙ Missingness: The corresponding attribution value will be zero 
when a feature is absent in a sample, ensuring that only present features 
contribute to the prediction. 
𝑥′𝑖 = 0 ⇒ 𝜑𝑖 = 0 (18)

∙ Consistency: In the Shapley value, consistency is crucial for reli-
able model interpretation. When comparing two models namely 𝜙 and 
𝜙′, their feature attribution data should vary consistently, preserving 
the relative importance of features and ensuring trustworthy insights. 
The equation is shown below: 
𝜙𝑥′

(

𝑧′
)

− 𝜙𝑥′
(

𝑧′∖𝑖
)

≥ 𝜙𝑥
(

𝑧′
)

− 𝜙𝑥
(

𝑧′∖𝑖
)

⇒ 𝜑𝑖(𝜙, 𝑥) ≥ 𝜑𝑖
(

𝜙′, 𝑥
)

(19)

Here in the equation, the notation 𝑧′ depicts a subset of the input 𝑥′, 
while 𝑧′∖𝑖 indicates the subset excluding the 𝑖th feature, setting 𝑧′𝑖 = 0. 
This approach is crucial for calculating Shapley values, as it helps 
determine the impact of each feature’s presence or absence on model 
predictions, ensuring accurate and interpretable feature attribution.

To secure a singular solution for 𝑔(⋅), it is essential to constrain the 
three properties mentioned earlier. Theoretically, only one value of 𝜙𝑖
aligns with these criteria, leading to a singular result for a equation. 

𝜑𝑖(𝜙, 𝑥) =
∑

𝑧′⊆𝑥′

|

|

𝑧′|
|

!
(

𝑀 − |

|

𝑧′|
|

− 1
)

!
𝑀!

[

𝜙𝑥
(

𝑧′
)

− 𝜙𝑥
(

𝑧′∖𝑖
)]

(20)

Here, 𝑧′ is a subset of 𝑥′, denoted by 𝑧′ ⊆ 𝑥′. The notation |
|

𝑧′|
|

 is es-
sential for calculating Shapley values to determine feature importance 
accurately, indicating the count of non-zero entries in subset 𝑧′.

Directly solving Eq. (20) presents a computational challenge due 
to the multitude of potential feature subsets. To overcome this, var-
ious approximation techniques, such as TreeSHAP, have emerged for 
efficiently computing the Shapley value. These computed values play 
a pivotal role in explaining the model’s output, enabling the creation 
of individual interpretation plots for diverse samples. In these plots, 
positive Shapley values are depicted in red, while negative ones are 
shown in blue, signifying the feature’s impact on the model output. 
Furthermore, the Shapley Value sheds light on the significance of differ-
ent features in final model predictions, with feature dependence plots 
offering insights into feature-target variable relationships. These plots 
illustrate the marginal effect of one single feature on the prediction 
when keeping the rest of the features constant, providing clear insights 
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into the feature’s impact. They assist in interpretation by displaying 
feature values on the 𝑥-axis and the corresponding predicted values 
of the target variable on the 𝑦-axis. Additional visual aids like shaded 
areas or error bars often accompany these plots to indicate prediction 
uncertainty.

4.4.2. Local Interpretable Model-agnostic Explanations
Local Interpretable Model-agnostic Explanations, which stands for 

LIME, is a popular methodology used to explain the predictions of 
machine learning models. Developed by Ribeiro, Singh, and Guestrin 
in 2016, LIME aims to provide insights into the behavior of complex 
models by approximating them with simpler, interpretable models 
locally around the prediction of interest [62].

LIME can be applied to any machine learning model, regardless 
of its complexity or type. This includes neural networks, ensemble 
methods, and even linear models. Instead of trying to explain the 
entire model, LIME focuses on explaining individual predictions [59]. It 
creates local approximations around the specific prediction to provide 
insights into why the model made that particular decision. LIME can 
use simple, interpretable models like linear models or decision trees to 
approximate the behavior of the complex model in the local vicinity of 
the prediction [63]. These models are easier for humans to understand 
and interpret. The entire framework of LIME in this work is presented 
in Fig.  9. We mainly use LIME to consider global importance,feature 
interactions, and local interpretation.

Normally, LIME starts by perturbing the input data around the 
instance being explained. For a given prediction, it generates several 
new data points by slightly altering the original data. Then the com-
plex model is used to predict the outcomes for these perturbed data 
points. This step helps in understanding how the model’s predictions 
change with slight variations in the input. The perturbed data points 
are weighted based on their similarity to the original instance. Points 
closer to the original instance receive higher weights, emphasizing 
the local behavior of the model. A simple, interpretable model (like 
a linear model) is then fitted to the perturbed data points, using the 
weights assigned in the previous step. This model serves as a local 
approximation of the complex model [64]. The coefficients or structure 
of the interpretable model provide insights into which features are most 
important for the prediction. These explanations are presented in a 
human-understandable format [65].

Overall feature importance is determined by averaging the contri-
butions of each feature across multiple samples. This approach helps 
identify which features are most influential in the model’s predictions, 
providing a foundation for model interpretation and optimization. Let 
𝑓 (𝑥) be the model’s prediction function, 𝑥𝑖 be the 𝑖th feature, and 𝑆 be 
the set of samples. The overall feature importance 𝐼(𝑥𝑖) is defined as:

𝐼(𝑥𝑖) =
1
|𝑆|

∑

𝑥∈𝑆
contribution(𝑥𝑖, 𝑥)

where contribution(𝑥𝑖, 𝑥) represents the contribution of feature 𝑥𝑖 in 
sample 𝑥. In LIME, feature importance is indicated by the weights in 
local explanations.

LIME explains the local behavior of complex models by generat-
ing new samples around the instance to be explained and training a 
simple, interpretable model (e.g., a linear model) on these samples to 
approximate the complex model’s behavior in that local region [66].

Given a complex model 𝑓 and an instance 𝑥 to be explained, LIME 
generates neighborhood samples 𝑍 and trains a simple model 𝑔 with 
the loss function:

𝐿(𝑓, 𝑔, 𝜋𝑥) +𝛺(𝑔)

where 𝐿 measures the difference between 𝑓 and 𝑔 on the neighborhood 
samples, 𝜋𝑥 is the weighting of the neighborhood samples, and 𝛺 is a 
regularization term for the complexity of 𝑔.
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Specifically, a linear model 𝑔 can be represented as:

𝑔(𝑧′) = 𝑤0 +
𝑑
∑

𝑖=1
𝑤𝑖𝑧

′
𝑖

where 𝑧′ are the neighborhood samples and 𝑤𝑖 are the weights indicat-
ing the importance of feature 𝑖.

Feature interaction analysis examines the combined effect of two 
or more features on the model’s predictions. By identifying interac-
tions between feature pairs, we can gain deeper insights into how 
the model leverages multiple features for its predictions. Interaction 
strength 𝐼(𝑥𝑖, 𝑥𝑗 ) is defined as the difference between the joint contribu-
tion of features 𝑥𝑖 and 𝑥𝑗 and the sum of their individual contributions:
𝐼(𝑥𝑖, 𝑥𝑗 ) = contribution(𝑥𝑖, 𝑥𝑗 ) − (contribution(𝑥𝑖) + contribution(𝑥𝑗 ))

where contribution(𝑥𝑖, 𝑥𝑗 ) is the joint contribution of features 𝑥𝑖 and 𝑥𝑗 . 
In LIME, interaction strength is calculated by analyzing the weights of 
feature pairs in local explanations.

SHAP is used for detailed analysis of feature importance and interac-
tions at a global scale and for individual predictions. LIME is employed 
to verify specific predictions and provide a simpler explanation in cases 
where domain experts may prefer straightforward, localized insights 
over global consistency. Using both methods enhances the robustness 
of our interpretability framework. By comparing the results from SHAP 
and LIME, we can validate that the explanations provided are consistent 
and reliable. LIME serves as a complementary tool to ensure that local-
ized behaviors observed in SHAP explanations hold under a different 
interpretability method.

4.5. Sensitivity analysis

Quantitative analysis (QA) employs mathematical and statistical 
modeling to understand the mechanisms behind behaviors, aiming 
to represent reality in numerical terms. In this article, we use local 
and variance-based sensitivity analysis (SA) to rank the importance of 
model inputs in contributing to output variability. Variance-based SA 
systematically varies input parameters to measure their impact on the 
model’s output, decomposing the variance into components that reflect 
the contribution of each parameter or their combinations. This method 
is particularly useful when inputs are highly correlated or interact in 
complex ways.

Using variance-based SA for our quantitative analysis provides de-
tailed insights into how each input parameter affects the model’s out-
put, identifying the most influential factors. This information is crucial 
for optimizing models and systems, as well as informing policy deci-
sions by highlighting the most impactful factors [67]. By understanding 
both the main effects and interactions of parameters, we can achieve 
more accurate models, better decision-making, and more efficient de-
signs, ensuring that we focus on the most critical aspects of the studied 
system.

4.5.1. First-order sensitivity indices
In this work, Key Performance Indicators (KPIs) in sensitivity anal-

ysis include the numerical values of the first-order sensitivity indices 
𝑆𝑖 and the total effect sensitivity indices 𝑆𝑇 𝑖. According to sensitivity 
analysis theory, these indices relate to a physical model’s response 
function, expressed as 𝒀 = 𝑓 (𝑋1, 𝑋2,… , 𝑋𝑘). As outlined by [68], the 
first-order sensitivity indices are derived from this framework: 

𝑆𝑖 =
𝑉𝑥𝑖 [𝐸𝑋∼𝑖

(𝒀 |𝑋𝑖)]

𝑉 (𝒀 )
(21)

In this context, 𝑉𝑥𝑖 [𝐸𝑋∼𝑖
(𝒀 |𝑋𝑖)] represents the main effect of 𝑋𝑖on 

the output variable in the mathematical model. The denominator, 𝑉 (𝒀 ), 
is the unconditional variance of 𝒀 . The term 𝑉𝑥𝑖 [𝐸𝑋∼𝑖

(𝒀 |𝑋𝑖)] indicates 
the variance of the expected value of 𝑉 (𝒀 ) when conditioned on 𝑋𝑖
meaning 𝑋𝑖 is fixed at a specific value 𝑋𝑗𝑖 , 𝑗 = 1,…… , 𝑁 ;, 𝑁 is the 
number of samples.
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Table 2
The comparison in experiments and prediction.
 Literature Materials properties Thermal conductivity (W/mK)
 𝜅𝑚 𝑉𝑓 Experiments Simulation Percent error 
 Zhengqing Yang [69] graphene (rGO)/epoxy (0.178 W/mK) 5% 1.239 1.3721 9.7%  
 Yun Seon Lee [70] rGO/epoxy (0.23 W/mK ) 5% 1.76 1.9273 8.6%  
 10% 2.56 2.8005 8.5%  
 Jinrui Gong [71] graphene/PI 0.25 W/mK ) 12% 3.73 3.5478 10.77%  
4.5.2. Total effect sensitivity indices
Theoretical modeling reveals the insufficiency of depending solely 

on the first-order sensitivity index, as it provides only a partial assess-
ment of model variance bias. Consequently, there arises a crucial need 
to broaden our analysis beyond the first order, in order to account 
for higher-order coupling effects and effectively mitigate this source of 
error. As a response to this imperative, an extension to the first-order 
sensitivity index is proposed, culminating in the formulation of the total 
effect index, as elaborated in [68]: 

𝑆𝑇𝑖 =
𝐸𝑥∼𝑖

[𝑉𝑋𝑖
(𝒀 |𝑿∼𝒊

)]

𝑉 (𝒀 )
= 1 −

𝑉𝑥∼𝑖 [𝐸𝑋𝑖
(𝒀 |𝑿∼𝒊

)]

𝑉 (𝒀 )
(22)

At the molecular position, 𝑉𝑥∼𝑖 [𝐸𝑋𝑖
(𝒀 |𝑿∼𝒊

)] represents the variance 
derived from the expected value of all parameters 𝒀  except 𝑋𝑖 denoted 
subsequently as 𝑿∼𝒊

. This variance characterizes the first-order effect 
of 𝒀  except 𝑋𝑖 on the model output, excluding the contribution of 𝑋𝑖.

The total effect index 𝑆𝑇𝑖  encapsulates the collective impact of 
input parameters 𝑋𝑖 on the output. This index signifies the summa-
tion of the first-order term and all higher-order terms, portraying the 
comprehensive influence of the input variables on the output. 
𝑆𝑇𝑖 = 𝑆𝑖 + 𝑆𝑖,∼𝑖

= 1 − 𝑆∼𝑖
(23)

where 𝑆∼𝑖
 is a sum, including all parameters’ sensitivity indices except 

of 𝑖.
Achieving accurate values for 𝑆𝑖 and 𝑆𝑇𝑖 , as described in Eqs. 

(21) and (22), necessitates a large number of samples, which can be 
computationally intensive, especially when data is limited. To address 
this, we utilize a surrogate model, denoted as 𝒀 , to approximate and 
depict the responses of the true physical model.

5. Numerical analysis and discussion

5.1. Results in multi-scale modeling

Fig.  10 illustrates the study in convergence, i.e., how the predictive 
outcomes varies with the RVE size, showing a trend that stabilizes 
at a specific value as it approaches a certain point. This convergence 
indicates RVE size at which further increases do not significantly affect 
the predicted thermal conductivity, suggesting that an optimal RVE size 
has been reached.

To provide a more comprehensive understanding,
Figs.  12 and 13 present the temperature gradient distribution in ‘Cube’ 
when the heat flow flows through the 𝑋-axis. Figs.  14 and 15 indicate 
the situation of 𝑌 -axis while Figs.  16 and 17 illustrate the 𝑍-axis. 
Figs.  12, 14 and 16 focus on the temperature distribution within the 
individual graphene, while Figs.  13, 15 and 17 show the tempera-
ture distribution across the composite material. These visualizations 
highlight how heat is transferred through different components of the 
material, further validating the model’s accuracy and effectiveness in 
predicting thermal properties. 

Additionally, we compare the values found in the literature with 
those presented in Table  2. This table contains outputs computation 
through stochastic multi scale simulation. By examining these com-
parisons, we can evaluate the accuracy and reliability of our model. 
The alignment or discrepancies between our model’s predictions and 
the literature values provide insights into the model’s performance and 
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Fig. 10. Convergence study: Thermal conductivity versus RVE size.

Fig. 11. The predictive performance of XGB in test set.

highlight areas for potential refinement. This comprehensive compari-
son underscores the robustness of our approach and its applicability in 
accurately predicting the properties under study. The stochastic multi-
scale modeling process, when executed on a MacBook Pro (15 inch, 
2017) equipped with a 2.8 GHz quad-core Intel Core i7 CPU, is about 
to require approximately 8 h. This extended runtime is attributed to the 
system’s limited processing power, with only four cores available, and 
limited GPU acceleration. The system specifications include a Radeon 
Pro 555 GPU with 2 GB VRAM, supplemented by an Intel HD Graphics 
630 with 1.5 GB shared memory, 16 GB of 2133 MHz LPDDR3 RAM.
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Fig. 12. Temperature distribution (◦C) of inner plates (graphene) within RVEs (𝑋-axis).

Fig. 13. Temperature distribution (◦C) of composites (graphene mixed with epoxy) 
within RVEs (𝑋-axis).

Fig. 14. Temperature distribution (◦C) of inner plates (graphene) within RVEs (𝑌 -axis).
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Fig. 15. Temperature distribution (◦C) of composites (graphene mixed with epoxy) 
within RVEs (𝑌 -axis).

Fig. 16. Temperature distribution (◦C) of inner plates (graphene) within RVEs (𝑍-axis).

Fig. 17. Temperature distribution (◦C) of composites (graphene mixed with epoxy) 
within RVEs (𝑍-axis).
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Table 3
Hyper-parameters tuning.
 ML method Hyper-parameters Definition Interval Optimum value 
 Gradient Boosting Machine n Number of estimators [0,150] 100  
 𝑁 The maximum number of regression tree [100,10000] 10000  
 𝑁𝑑 Maximum depth of tree [1,10] 4  
 𝜆 The learning rate [0.001,0.99] 0.03  
 𝐷𝑖𝑎 Interaction depth [1,10] 7  
Table 4
ML models performance in prediction.
 ML model Sets 𝑅2 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 MAPE (%)  
 Gradient Boosting Machine (XGBoost) Training 0.9960895358598272 0.0495465858010725 0.029409395870822447 2.6910865129030777  
 Test 0.8470324779142511 0.28600361472317265 0.11576731435512813 0.11576731435512813 
5.2. Results in machine learning

The initial outcome of the optimization process identifies the best 
settings for XGBoost. Key parameters include the complexity and the 
minimum samples per split, which are set to 0, 5, and 10. The tuning 
also determines the number of estimators to be 100, the learning rate 
to be 0.03, the maximum number of regression trees to be 10,000, the 
interaction depth to be 7, and the maximum tree depth to be 4. A 
detailed summary of these selected hyperparameters can be found in 
Table  3.

Table  4 highlights the performance metrics of XGBoost, demonstrat-
ing its reliability and effectiveness in predicting the required properties. 
To further illustrate the model’s predictive accuracy, scatter plots of 
its predictions are presented. Fig.  11 shows the scatter plot of XGBoost 
predictions on the test set, where most points align closely with the 𝑌 =
𝑇  line, indicating high accuracy. This alignment underscores XGBoost’s 
excellence as a regression tree-based model, effectively capturing the 
relationship between the input features and the target variable. Addi-
tionally, the points are densely concentrated within the data interval of 
[0.5–2.5], suggesting particularly precise predictions within this range. 
This concentration indicates that the model performs exceptionally well 
within this specific domain, making it a robust choice for applications 
requiring high precision in this interval. The scatter plot visually con-
firms the model’s ability to generalize well to unseen data, reinforcing 
its potential utility in various predictive tasks. The generation of the 
training database for machine learning (ML), which involves data 
preprocessing, feature extraction, and dataset preparation, is expected 
to take approximately 39 min (2363 s) on the same system (2.8 GHz 
quad-core Intel Core i7 CPU, Radeon Pro 555 2 GB, Intel HD Graphics 
630 1536 MB, 16 GB of 2133 MHz LPDDR3 RAM). The quad-core 
CPU’s limited parallel processing capabilities similarly constrain the 
task’s runtime. The system specifications remain identical, with the 
reliance on Python-based libraries such as Pandas and Scikit-learn for 
data handling and preparation. 

5.3. Model interpretations in SHAP method

Three components in interpretability regarding SHAP will be dis-
cussed in Individual Interpretations, Global Interpretations, and Feature 
Dependency to unveil the inside mechanism of workings in opacity.

5.3.1. Global interpretations
The absolute mean of every SHAP value in single feature is cal-

culated to assess its importance as the start of global interpretability, 
yielding a standardized bar chart as depicted in Fig.  18. This chart 
reveals the broad influences of different features on predictions. It is 
worth noting that the results indicate the matrix’s thermal conductivity 
is a crucial parameter influencing the thermal conductivity of the com-
posite on a macro scale. In contrast, the dispersion index is relatively 
less significant. The volume fraction also plays a role in composite 
thermal conductivity but to a lesser extent. Conversely, agglomeration 
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and dispersion indices exhibit relatively minor effects on the overall 
outcome. The SHAP summary plot, depicted in Fig.  19, presents the 
distribution of SHAP values for each feature, illustrating their respec-
tive contributions to the model’s predictions. Each feature listed on 
the 𝑦-axis influences the model output, with SHAP values on the 𝑥-
axis representing the impact on the model’s predictions. Regarding 
the color gradient, from blue (low) to red (high) in the SHAP plot, 
illustrating each feature’s impact on predictions. For instance, in the 
thermal conductivity of matrix and volume fraction, high values (red) 
generally push the model output higher, whereas low values (blue) pull 
it lower, reinforcing the influence of high feature values on increasing 
thermal conductivity.

Analyzing Fig.  19, we note the thermal conductivity of matrix 
show a significant spread of SHAP values, indicating it has a strong 
influence on the model’s predictions. High values (marked in red) tend 
to increase model output, suggesting that a higher thermal conductivity 
of matrix significantly increases predicted composite thermal conduc-
tivity. Volume Fraction also displays a broad distribution, meaning it 
is relatively influential. High values contribute positively, though the 
impact is somewhat less pronounced than the thermal conductivity 
of matrix. The distribution of Aspect Ratio here is moderate. Higher 
aspect ratios seem to positively influence the model output, though the 
effect is more centered around zero, indicating a balanced influence 
with both positive and negative contributions. Kapitza Resistance has 
a balanced impact, with low values (blue) generally having a negative 
impact on predictions and high values contributing positively. High 
thermal conductivity of graphene correlates with a positive impact on 
model output, as indicated by the red values on the positive side. 
Agglomeration Index and Dispersion Index have a limited impact on 
the predictions, as shown by the narrow distribution of SHAP values 
around zero.

5.3.2. Local interpretation
Besides, SHAP values also enable us to gain insights into individual 

interpretations for each sample. Figs.  20 represents there distinctive 
samples that can be further elucidated. The length of each bar reflects 
the magnitude of these changes as well as the colors show the different 
directions. The red bars in the figure indicate features contributing to a 
boost in outcomes in the base value, while blue bars lead corresponding 
features in contrast.

In sample 51, we observe the corresponding thermal conductivity 
of matrix and inside fillers graphene positively impact critical feature 
predictions, whereas the agglomeration index, volume fraction, and 
aspect ratio negatively affect the final prediction. Turning to sample 75, 
we note that dispersion index and aspect ratio positively impact final 
model output, while the agglomeration index, thermal conductivity of 
matrix, and volume fraction exhibit somewhat negative impacts on 
the model outputs. As for sample 80, the agglomeration index and 
the volume fraction have positive influence on the prediction while 
polymer and graphene’s thermal conductivity negatively affect the 
model outcomes.
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5.3.3. Feature interactions
We examine outcomes of the SHAP in every feature relative to 

whole dataset, gaining deeper insights into how individual feature 
values impact ML models training. Fig.  22(a)–(g) illustrates the SHAP 
dependence plots for different features, showing their impact on pre-
dicting the thermal conductivity of the composite material. In Fig. 
22(a), there is a clear inverse relationship between the SHAP value and 
the thermal conductivity of matrix value, suggesting that as the thermal 
conductivity of matrix value increases, its impact on the model’s output 
diminishes. High values of the thermal conductivity of matrix (toward 
the right) generally decrease the SHAP value, indicating a reduced 
influence on predicted thermal conductivity at higher thermal conduc-
tivity of matrix levels. In Fig.  22(b), The plot shows a scattered pattern 
with a relatively lower range of SHAP values at high volume fractions, 
suggesting that increasing volume fraction stabilizes its influence on the 
predictions. The color gradient (with high values in red and low in blue) 
indicates potential interactions with the ‘‘Thermal Matrix’’ feature, sug-
gesting a compounded effect when both thermal conductivity of matrix 
and volume fraction values are high. In Fig.  22(c), The aspect ratio 
plot shows that higher aspect ratios tend to have a balanced impact on 
model predictions, with SHAP values clustered around zero. The color 
coding reveals that high volume fraction values (red) amplify the posi-
tive impact of higher aspect ratios on the model’s output. In Fig.  22(d), 
This plot indicates a generally balanced contribution of Kapitza to the 
SHAP values, with both positive and negative impacts around a central 
range. The thermal conductivity of matrix values (color-coded) show 
an interaction effect where higher Kapitza values and high thermal 
conductivity of matrix values together increase the model’s predictive 
output. In Fig.  22(e), Thermal graphene exhibits a dispersed SHAP 
value pattern, indicating that high thermal conductivity of graphene 
has a slightly positive impact on the prediction, though not as dominant 
as other features. The thermal conductivity of matrix interaction is 
visible, with higher thermal conductivity of matrix values slightly 
increasing the impact of thermal graphene on model predictions. In Fig. 
22(f), Higher agglomeration index values seem to positively influence 
the model’s output, as indicated by the upward trend of SHAP values 
with increasing agglomeration index. High volume fraction (red dots) 
amplifies the agglomeration index’s positive influence, showing that the 
interaction between these factors is relevant in affecting the model’s 
predictions. In Fig.  22(g), The dispersion index has an overall weak 
effect on SHAP values, although a slight upward trend in SHAP values 
is observed with higher dispersion index values. The color gradient 
shows an interaction with the thermal conductivity of matrix, where 
high thermal conductivity of matrix values (red) moderately amplify 
the positive SHAP values associated with higher dispersion index levels.

Additionally, Fig.  21 shows the SHAP interaction values among 
different parameters, highlighting how pairs of features interact to in-
fluence the model’s prediction of composite thermal conductivity. Each 
row corresponds to a primary feature, while each column represents 
the interaction with another feature. SHAP interaction values on the 𝑥-
axis indicate the strength and direction of the combined effect of each 
feature pair on the model’s output, with positive values increasing and 
negative values decreasing the prediction. The thermal conductivity 
of matrix feature shows strong interactions with itself and volume 
fraction, indicated by the wide spread of SHAP values in these cells. 
High values of the thermal conductivity of matrix tend to increase 
the model’s predictions, especially when interacting with other high 
values (in red). Volume fraction also exhibits significant interactions, 
particularly with itself and with the thermal conductivity of matrix, 
implying that these two features together are crucial in shaping the 
model’s predictions. The spread of values suggests that higher volume 
fractions positively influence the prediction, especially in combination 
with high thermal conductivity of matrix values. Aspect ratio has mod-
erate interactions, mainly with itself and to a lesser extent with other 
features. The distribution of SHAP values around zero suggests that 
aspect ratio has a balanced, less extreme effect on predictions compared 
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Fig. 18. Global interpretations by SHAP values (SHAP feature importance).

Fig. 19. Global interpretations by SHAP values (SHAP summary plot).

Fig. 20. Individual interpretations for different Samples.

to thermal conductivity of matrix and volume fraction. Kapitza shows 
a relatively balanced interaction profile, indicating that it moderately 
affects predictions. Higher values of Kapitza, especially in combination 
with high values of other features, can enhance model output, as seen 
in the interaction with thermal conductivity of matrix and volume frac-
tion. The thermal conductivity of graphene has a minimal but generally 
positive interaction effect. Its interaction with the thermal conductivity 
of matrix and volume fraction slightly increases the predictive output, 
but overall, it has a narrower impact range. Both the agglomeration 
and dispersion indices show limited influence on the model output, as 
seen by their narrow distributions around zero. This suggests they have 
minor interactions with other features and a negligible effect on the 
overall predictions. 
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Fig. 21. SHAP interaction value among different parameters.

5.4. Model interpretations in LIME

In this section, we present the results from LIME, focusing on global 
interpretations, feature interactions, and local interpretations of sam-
ples. These insights will help us understand the overall behavior of the 
model, identify significant feature interactions, and explain individual 
predictions.

5.4.1. Global interpretations
The Fig.  23 illustrates that Thermal Matrix and Volume Fraction are 

the most important features in the model’s predictions. Thermal con-
ductivity of matrix has the highest average importance, approximately 
0.35, while Volume Fraction follows with an average importance of 
around 0.25. This indicates that these features play a crucial role in 
the model’s decision-making process. 

Aspect Ratio and Kapitza also demonstrate significant average im-
portance, with values around 0.10 and 0.05, respectively, highlight-
ing their substantial roles in the model. In contrast, Agglomeration 
Index and Dispersion Index have lower average importance, about 
0.05 and 0.02, respectively, suggesting a relatively smaller impact on 
the model. Thermal Graphene shows the lowest average importance 
at approximately 0.01, indicating minimal influence on the model’s 
predictions.

The chart depicts the distribution of feature importance across all 
selected samples. Higher importance signifies greater consistency and 
impact on the model’s predictions. This visualization aids in under-
standing the features the model relies on, providing a basis for feature 
selection and potential model improvements.

Compare the results from Figs.  18 and 23, both LIME and SHAP 
identify Thermal Matrix and Volume Fraction as the most influential 
features in determining thermal conductivity. However, LIME ranks 
Volume Fraction as the most significant feature, followed closely by 
Thermal Matrix, while SHAP places thermal conductivity of matrix 
as the dominant feature with a larger margin of importance. This 
consistency in highlighting the two key features across both methods 
reinforces their significance in the model. Additionally, features like 
Agglomeration Index and Dispersion Index remain less important in 
both interpretations, suggesting that these features have a relatively 
minor impact on the model’s predictions.

However, the importance of the Kapitza and Aspect Ratio features 
varies slightly between the two methods. In the LIME results, Aspect Ra-
tio appears to play a more significant role, ranking higher than Kapitza, 
whereas SHAP shows Kapitza as slightly more influential than Aspect 
Ratio. Furthermore, the impact of Thermal Graphene is minimal in both 
methods, but LIME ranks it slightly higher than SHAP. These differences 
likely stem from the distinct ways that LIME and SHAP quantify feature 
importance — LIME provides local explanations for individual predic-
tions, whereas SHAP calculates global feature importance based on the 
overall contribution across all data points.
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5.4.2. Feature interactions
By analyzing the importance of feature interactions, we can gain 

a deeper understanding of the model’s logic in the prediction process, 
enhancing its interpretability and usability. A common pattern in these 
interactions is the combination of specific ranges of one feature with 
specific ranges of another, such as the frequent pairing of different 
ranges of Volume Fraction and Thermal Matrix. This indicates that the 
joint distribution of these features significantly impacts the model’s 
predictions.

The Fig.  25 displays the combined importance of feature pairs, 
with high combined importance indicating a key role in the model’s 
decision process. As shown in the figure, the interaction between 0.05 <
Volume Fraction ≤ 0.08 and Thermal Matrix ≤ 0.18 is the most critical, 
with a combined importance close to 1.2. This suggests that this feature 
interaction has the greatest influence on the model’s predictions. Other 
important interactions include 0.25 < Thermal Matrix ≤ 0.34 and 
Volume Fraction ≤ 0.03 and 0.05 < Volume Fraction ≤ 0.08 and 
0.18 < Thermal Matrix ≤ 0.25, both with a combined importance of 
around 0.8.

Additional significant feature pairs are 0.25 < Thermal Matrix ≤
0.34 and Volume Fraction > 0.08, 57.82 < Aspect Ratio ≤ 79.86
and Thermal Matrix > 0.34, and 37.16 < Aspect Ratio ≤ 57.82 and 
Thermal Matrix > 0.34, with their combined importance ranging from 
0.5 to 0.7.

Aspect Ratio, Thermal Matrix, and Volume Fraction frequently ap-
pear in these important interaction pairs, highlighting their substantial 
impact on model predictions. This interaction pattern suggests an un-
derlying regularity in the data, indicating interdependence between 
features.

Interaction intensity profiles provide insights into the interactions 
between features and their importance to model predictions. The 
Fig.  24 reveals that the frequency distribution of interaction strength 
presents a right-skewed long-tail distribution, with most interaction 
strengths concentrated in the lower value range. Interaction strengths 
between 0.0 and 0.1 have the highest frequency, occurring more 
than ten times. This indicates that most feature pairs exhibit small 
interaction effects.

As the intensity of interaction increases, the frequency gradually de-
creases, showing that there are fewer feature pairs with strong interac-
tions. Although the frequency of feature pairs with interaction strengths 
between 0.6 and 1.2 is low, these pairs have a greater influence on 
model predictions. These high-interaction-strength features may sig-
nificantly impact model predictions under specific circumstances and 
warrant further study and attention.

From the distribution trend perspective, the Kernel Density Esti-
mation (KDE) curve further illustrates the distribution of interaction 
strength. The curve peaks near 0.1 and then gradually decreases, 
indicating that while most feature pairs have low interaction strength, 
there are still a few pairs with high interaction strength.

Through the results from Fig.  26, we can better understand the 
performance of feature interactions in different samples. We selected 
five samples to illustrate the relevant results.

Fig.  26(a): The local impact of 0.05 < Volume Fraction ≤ 0.08 and 
Thermal Matrix ≤ 0.18. It is evident that this feature has the largest 
local impact on sample 8, which is significantly higher than in other 
samples. The local effects on other samples are relatively low and 
stable, indicating that this feature generally has a small impact but 
plays a significant role in specific samples.

Fig.  26(b): The local effect of 0.25 < Thermal Matrix ≤ 0.34 and 
Volume Fraction ≤ 0.03. In sample 9, this pair of features has the largest 
local impact, suggesting a significant influence on model predictions for 
this sample. The impact on other samples is lower and relatively stable, 
indicating a limited impact in most cases.

Fig.  26(c): The local effect of 0.05 < Volume Fraction ≤ 0.08 and 
0.18 < Thermal Matrix ≤ 0.25. This feature pair has a large local 
impact on samples 0 and 8, indicating a significant contribution to 
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Fig. 22. Feature dependence plots.
Fig. 23. Overall feature of importance in LIME method.

Fig. 24. Interaction strength distribution among overall factors.
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model predictions in these samples. The impact on other samples is 
lower and more evenly distributed, showing a relatively small impact 
in most samples.

Fig.  26(d): The local impact of 0.25 < Thermal Matrix ≤ 0.34
and Volume Fraction > 0.08 on samples 3, 4, and 8. This pair of 
features has a larger local impact on these samples, indicating a greater 
contribution to model predictions. The impact on other samples is 
lower and unevenly distributed, highlighting significant variability in 
the impact among different samples.

Fig.  26(e): The local effect of 57.82 < Aspect Ratio ≤ 79.86 and 
Thermal Matrix > 0.34. The local effects are largest on samples 1 and 3, 
indicating a significant impact on model predictions in these samples. 
The impact on other samples is low and stable, suggesting a relatively 
small impact in most cases.

The feature interaction heat map reveals the interrelationships be-
tween features. By analyzing these relationships, the model can be 
better understood and optimized, improving both its predictive power 
and interpretability. Specific pairs of highly interactive features high-
lighted in the heat map deserve further study and attention. The 
features displayed in the heatmap were not pre-screened, as the purpose 
of this analysis was to provide a comprehensive view of all potential 
feature interactions in the model.

As can be seen in Fig.  27, which displays three levels of interaction 
intensity:

• High-Strength Interaction: The interaction strength between
Thermal Matrix (thermal conductivity of matrix) and Volume Frac-
tion is close to 1 (0.99), indicating a very strong interactive 
relationship in the model. The interaction strength between Ther-
mal Matrix (thermal conductivity of matrix) and Aspect Ratio is also 
relatively high (0.53), signifying a significant mutual influence 
between these two features.
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Fig. 25. Overall feature interactions in LIME method.
Fig. 26. Selected 5 top most important feature pairs and local impact on different samples.
• Medium-Strength Interaction: The interaction strength between
Volume Fraction and Aspect Ratio is 0.41, suggesting a notable 
influence between them. Additionally, the interaction strength 
between Agglomeration Index and Aspect Ratio is 0.36, indicating 
a moderately strong interaction between these features.

• Low-Strength Interaction: For most feature pairs, the interac-
tion strength is low, close to 0, indicating a small or negligible 
interaction effect between these pairs.
17 
The interaction strength between Thermal Matrix and Volume Frac-
tion almost reaches the maximum value, indicating a very close rela-
tionship in model predictions. This strong interaction may help opti-
mize the model’s performance. The interaction strength between Ther-
mal Matrix and Aspect Ratio is 0.53, suggesting that these two features 
can jointly affect the model’s prediction results in some cases. The 
interaction strength between Volume Fraction and Aspect Ratio is 0.41, 
implying that, to a certain extent, the combination of these two features 
influences the model’s predictions. Similarly, the interaction strength 
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Fig. 27. Heatmap of feature interactions.
Table 5
Local interpretation (Feature importance) of 9 selected samples.
 Sample Index Predicted value Thermal graphene Thermal matrix Kapitza Aspect ratio Volume fraction Agglomeration Dispersion 
 103.0 1.361851 0.056089 −0.582026 −0.027901 0.028747 0.672186 0.000000 0.000000  
 104.0 1.177865 0.000000 −0.337557 0.056307 0.183590 −0.412122 0.000000 0.041460  
 92.0 0.917865 0.000000 −0.342848 −0.025765 −0.170581 −0.289699 0.020721 0.000000  
 89.0 1.579804 0.000000 −0.369224 0.000000 −0.150841 0.686172 −0.072517 0.031017  
 97.0 1.147424 0.000000 −0.122192 −0.009913 −0.112237 0.054622 −0.054379 0.000000  
 30.0 2.919846 0.000000 0.999995 −0.053861 −0.094192 0.682349 −0.074107 0.000000  
 123.0 1.048928 0.000000 −0.126275 0.000000 −0.138444 −0.411122 −0.075657 0.093561  
 91.0 0.792079 0.000000 −0.570817 −0.074600 0.041033 −0.403543 −0.054885 0.000000  
 117.0 0.905157 −0.016489 −0.393365 −0.042748 −0.153768 0.066687 0.000000 0.000000  
between Agglomeration Index and Aspect Ratio is 0.36, indicating that 
their interaction has a notable impact on model predictions under 
certain circumstances. The interaction strength between other feature 
pairs is lower, indicating that these pairs have less or no significant 
influence on each other.

5.4.3. Local interpretation of samples
The analysis results in the Table  5 show that when the model 

predicts different samples, the contributions and interactions of various 
features differ significantly. Predicted values range from 0.792079 to 
2.919846, indicating substantial variation in the model’s predictions 
across different samples. Different features contribute differently in 
each sample, with some features having positive contributions in cer-
tain samples and negative contributions in others. Thermal Matrix,
Volume Fraction, and Aspect Ratio are the most influential features, 
significantly impacting multiple samples. In several samples, some 
features, such as Thermal Matrix and Aspect Ratio, contribute negatively 
to the predicted value. 
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As illustrated in Fig.  28, the feature importance distribution varies 
across samples. For instance, in Sample 1, Volume Fraction and Thermal 
Matrix are the main features, while in Sample 2, Volume Fraction and
Aspect Ratio dominate.

The red bars in the chart represent the negative contribution of fea-
tures to the predicted value, whereas the green bars represent positive 
contributions. For example, in Sample 1, Volume Fraction contributes 
negatively, while Thermal Matrix contributes positively. Additionally, 
the chart highlights the impact of feature interactions on prediction 
results. In Sample 3, the combination of Volume Fraction and Thermal 
Matrix has a large negative contribution to the predicted value.

To understand the model’s decision-making basis for individual 
samples, we deeply analyze which features have a significant impact 
in specific situations in different samples:

• Sample 1: Volume Fraction ≤ 0.03 and Thermal Matrix > 0.34 have 
a significant positive impact on the predicted value, while Thermal 
Graphene ≤ 3963.19 has a negative impact.
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Fig. 28. Local interpretation of 9 selected samples.
• Sample 2: Volume Fraction > 0.08 and Thermal Matrix ≤ 0.34 have 
a significant negative impact, while Aspect Ratio ≤ 37.16 has a 
positive impact.

• Sample 3: Thermal Matrix ≤ 0.34 and Volume Fraction ≤ 0.08 have 
a significant negative impact, while Agglomeration Index ≤ 0.55
has a positive impact.

• Sample 4: Volume Fraction ≤ 0.03 and Thermal Matrix ≤ 0.34 have 
a significant negative impact, while Aspect Ratio > 79.86 has a 
positive impact.
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• Sample 5: Thermal Matrix > 0.25 and Aspect Ratio ≤ 79.86 have 
a significant negative impact, while Volume Fraction ≤ 0.05 has a 
positive impact.

• Sample 6: Thermal Matrix ≤ 0.18 and Volume Fraction ≤ 0.03 have 
a significant positive impact, while Agglomeration Index ≤ 0.55 has 
a negative impact.

• Sample 7: Volume Fraction > 0.08 and Aspect Ratio ≤ 79.86 have 
a significant negative impact, while Dispersion Index ≤ 0.55 has a 
positive impact.
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• Sample 8: Thermal Matrix > 0.34 and Volume Fraction > 0.08 have 
a significant negative impact, while Aspect Ratio ≤ 57.82 has a 
positive impact.

• Sample 9: Thermal Matrix ≤ 0.34 and Aspect Ratio > 79.86 have 
a significant negative impact, while Volume Fraction ≤ 0.05 has a 
positive impact.

From the Table  5 and Fig.  28, we can also comprehensively analyze 
that the characteristics of Thermal Matrix and Volume Fraction have 
significant effects in multiple samples, with their influence being either 
positive or negative. This indicates their varying effects in different con-
texts. Additionally, the combination of different features significantly 
impacts the predicted value. For instance, the interaction between
Thermal Matrix and Volume Fraction has a notable effect in multiple 
samples, highlighting the crucial role of feature interactions in the 
model.

Moreover, the importance and direction of different features vary 
across samples, indicating the model’s complex behavior in different 
scenarios. For example, Aspect Ratio has a positive impact in some 
samples (such as Sample 2) and a negative impact in others (such as 
Sample 5).

Ultimately, the balance of contributions from positive and negative 
features in each sample determines the predicted value. This balance 
reflects the model’s comprehensive consideration of each feature.

5.5. Sensitivity analysis

We consider quadratic regression and moving least square regres-
sion as surrogate models for sensitivity analysis. Then 100,000 Latin 
hypercube samples within those models are generated. The Si and 
values are computed using the MLS approximation method and poly-
nomial regression. The reduction in the sensitivity index indicates how 
closely the surrogate model approximates the ‘real’ model. Table  6 
displays the outcomes from the variance-based methods. Figs.  29 and
30 illustrate these trends in first-order indices and total-effect indices, 
respectively. The main takeaways from the sensitivity analysis can be 
obtained from those data. From this table, it presents that the total-
effect indices and first-order indices show almost no discrepancies, 
implying no correlations among the input parameters. We can also 
find here all surrogate models exhibit suitability and predict the same 
trends, which means the parameter relevance and importance of this 
physical model are independent of the choice of surrogate models. 
From the numerical values of Si and STi we can find that, the volume 
fraction and aspect ratio exert the most significant influence on the 
overall thermal conductivity of the composite, followed by the ther-
mal conductivity of the matrix and the conductivity of the graphene. 
Kapitza resistance corresponds to less sensitivity to parameter changes, 
which means that the interface effect has a smaller impact in the 
macroscopic composite design process compared with other mesoscopic 
parameters. Agglomeration index and Dispersion index have the lowest 
sensitivity and have the smallest impact on the results. The reason may 
be that the homogenization process of composite materials treats the 
interior as a homogeneous continuum, thereby reducing the impact of 
agglomeration and dispersion. 

6. Conclusions

A data-driven technique with multi-scale approach is utilized to 
accurately predict the Polymeric Graphene-Enhanced Composites’ ther-
mal conductivity, covering both meso- and macro-scales through
stochastic multi-scale approach, hierarchical modeling, and
interpretable machine learning (XAI). Critical parameters include filler 
and matrix thermal conductivity, aspect ratio, volume fraction, Kapitza 
resistance, agglomeration index, and dispersion index, with uncertain-
ties quantified using probability density functions. Utilizing XGBoost 
for modeling and prediction, we achieve reliable results. To enhance 
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Fig. 29. First order sensitivity indices.

Fig. 30. Total effect sensitivity indices.

interpretability, we apply both SHAP and LIME models to gain insights 
into model mechanisms and conduct sensitivity analyses to assess the 
impact of design parameters on material properties.

This approach improves the transparency of both data and physical 
models, reducing the reliance on extensive analytical modeling and 
simulations in material structural design. It enhances the credibility of 
predictions and significantly lowers computational costs compared to 
previous multi-scale stochastic modeling methods. The key conclusions 
of this study are as follows:

1. The XGBoost algorithm, when coupled with PSO hyperparam-
eter tuning and 10-fold cross-validation, exhibits robust predictive 
capabilities while maintaining reasonable computational efficiency.

2. Global interpretations under SHAP method indicate that the poly-
mer matrix thermal conductivity presents the most significant influence 
on final outcomes, followed by the volume fraction as well as aspect 
ratio, with the dispersion index being the least influential.

3. On a local scale, the ultimate prediction for a particular sample 
is broken down into a base value and contributions from each feature, 
facilitating a visible quantification of the effects of individual features.

4. Furthermore, SHAP analysis elucidates how the impact of in-
dividual feature on thermal conductivity of composite changes with 
influence index, providing nuanced and intuitive insights, and aiding 
in identifying optimal ranges for composite design.

5. The analysis of feature importance in LIME shows that Thermal 
Matrix (thermal conductivity of matrix) and Volume Fraction are the most 
critical features, with average importance values of approximately 0.35 
and 0.25, respectively, while other features like Aspect Ratio, Kapitza,
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Table 6
First-order and total effects sensitivity indices computed on different surrogate models.
 Influencing factors Quadratic without mixed terms Full quadratic regression MLS  
 First-order indices 𝑆̂𝑖 First-order indices 𝑆̂𝑖 First-order indices 𝑆̂𝑖 First-order indices 𝑆̂𝑖  
 𝑆1: Thermal graphene 𝑆1 = 0.1039 𝑆1 = 0.1039 𝑆1 = 0.1039  
 𝑆2: Thermal matrix 𝑆2 = 0.1217 𝑆2 = 0.1217 𝑆2 = 0.1217  
 𝑆3: Kapitza resistance 𝑆3 = 0.0212 𝑆3 = 0.0212 𝑆3 = 0.0212  
 𝑆4: Aspect ratio 𝑆4 = 0.3301 𝑆4 = 0.3301 𝑆4 = 0.3301  
 𝑆5: Agglomeration index 𝑆5 = 0.0087 𝑆5 = 0.0087 𝑆5 = 0.0087  
 𝑆6: Dispersion index 𝑆6 = 0.0087 𝑆6 = 0.0087 𝑆6 = 0.0087  
 𝑆7: Volume fraction 𝑆7 = 0.4057 𝑆7 = 0.4057 𝑆7 = 0.4057  
 ∑5

𝑖=1 𝑆̂𝑖 = 0.9999
∑5

𝑖=1 𝑆̂𝑖 = 0.9999
∑5

𝑖=1 𝑆̂𝑖 = 1  
 Total-effect indices ̂𝑆𝑇 𝑖 Total-effect indices ̂𝑆𝑇 𝑖 Total-effect indices ̂𝑆𝑇 𝑖 Total-effect indices ̂𝑆𝑇 𝑖 
 ̂𝑆𝑇 1 Thermal graphene ̂𝑆𝑇 1 = 0.1039 ̂𝑆𝑇 1 = 0.1039 ̂𝑆𝑇 1 = 0.1039  
 ̂𝑆𝑇 2 Thermal matrix ̂𝑆𝑇 2 = 0.1217 ̂𝑆𝑇 2 = 0.1217 ̂𝑆𝑇 2 = 0.1217  
 ̂𝑆𝑇 3 Kapitza resistance ̂𝑆𝑇 3 = 0.0212 ̂𝑆𝑇 3 = 0.0212 ̂𝑆𝑇 3 = 0.0212  
 ̂𝑆𝑇 4 Aspect ratio ̂𝑆𝑇 4 = 0.3301 ̂𝑆𝑇 4 = 0.3301 ̂𝑆𝑇 4 = 0.3301  
 ̂𝑆𝑇 5 Agglomeration index ̂𝑆𝑇 5 = 0.0087 ̂𝑆𝑇 5 = 0.0087 ̂𝑆𝑇 5 = 0.0087  
 ̂𝑆𝑇 6 Dispersion index ̂𝑆𝑇 6 = 0.0087 ̂𝑆𝑇 6 = 0.0087 ̂𝑆𝑇 6 = 0.0087  
 ̂𝑆𝑇 7 Volume fraction ̂𝑆𝑇 7 = 0.4057 ̂𝑆𝑇 7 = 0.4057 ̂𝑆𝑇 7 = 0.4057  
 ∑5

𝑖=1
̂𝑆𝑇 𝑖 = 1

∑5
𝑖=1

̂𝑆𝑇 𝑖 = 1
∑5

𝑖=1
̂𝑆𝑇 𝑖 = 1  
Agglomeration Index, Dispersion Index, and Thermal Graphene have lower 
importance, indicating varying impacts on the model’s predictions.

6. The analysis in LIME reveals that Thermal Matrix (thermal conduc-
tivity of matrix) and Volume Fraction, with average importance values 
of 0.35 and 0.25 respectively, are the most critical features, and their 
strong interaction (close to 1) significantly impacts the model’s per-
formance, along with notable interactions between Thermal Matrix 
(thermal conductivity of matrix) and Aspect Ratio (0.53) and Volume 
Fraction and Aspect Ratio (0.41).

7. The varying distribution of feature importance and interaction 
strengths across samples highlights the model’s complexity, with high-
strength interactions (e.g., Thermal Matrix (thermal conductivity of ma-
trix) and Volume Fraction) indicating optimization areas, while most fea-
ture pairs exhibit low-strength interactions, suggesting minimal mutual 
influence.

8. The analysis in LIME shows that Thermal Matrix (thermal conduc-
tivity of matrix), Volume Fraction, and Aspect Ratio are the most influen-
tial features, with varying impacts across samples. Feature interactions, 
particularly between Thermal Matrix (thermal conductivity of matrix)
and Volume Fraction, significantly affect predictions. This variation in 
feature importance and direction highlights the model’s complexity. Ul-
timately, the balance of positive and negative contributions determines 
the predicted values.

9. In terms of feature importance, the volume fraction and aspect 
ratio exert the greatest influence on overall thermal conductivity, fol-
lowed by the matrix and graphene’s thermal conductivity . Conversely, 
the agglomeration and dispersion indices exhibit lower sensitivity and 
have a minor impact on the results.

Limitations and future work

Despite the promising results achieved by the proposed stochastic 
multiscale machine learning framework, several limitations remain. 
The current study relies on idealized microstructures with simplified 
filler shapes and interfacial conditions, which may not fully reflect 
the complexity of real composites. Additionally, the model is trained 
on synthetic data, and further experimental validation is needed to 
confirm its generalizability. While SHAP and LIME provide valuable 
interpretability, their reliability may decrease in high-dimensional or 
correlated feature spaces. Future work will explore more robust in-
terpretability techniques, such as counterfactual or causal methods, 
and investigate alternative learning models like graph neural networks 
(GNNs) and physics-informed neural networks (PINNs). We also plan to 
incorporate real-time surrogate modeling and active learning strategies 
to reduce computational cost and enable more efficient material design 
exploration. In addition, it would be beneficial for future studies to 
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consider the influence of surface convective heat transfer on the system-
level thermal performance of composite materials. For instance, as 
was demonstrated by Li [72,73], who first proposed an advanced 
attachment ventilation with broad application scenarios, this technique 
is designed to generate wall-attached jets along surfaces, and might sig-
nificantly change heat transfer performance compared to conventional 
mixed ventilation. Integrating specific heat conduction and convec-
tion mechanisms into multiscale modeling frameworks would enable 
a more accurate prediction of material performance under engineering 
conditions.
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