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A B S T R A C T   

Recently, drive-by-bridge inspection methods have attracted substantial scholarly interest; however, their 
practical implementation has encountered significant challenges. In engineering practice, even simply extracting 
bridge frequencies from ordinary or commercial vehicles appears to be difficult; components related to factors 
such as road roughness often dominate vehicle vibration responses. This study proposes a novel coherence-PPI 
(Prominent Peak Identification) algorithm based on the Bayesian framework and applies it to city bus bridge 
monitoring to extract bridge frequencies. The fundamental idea is to recognize the bridge frequency as a common 
vibration component across various vehicle runs. The algorithm comprises the following three steps: First, co
herences were computed for all vehicle runs to interpret the signal relationships. Second, a Bayesian framework 
was established to statistically determine the threshold that can maximize the occurrence of bridge frequency. 
Third, the prominent peaks (PPs) were selected based on the threshold, and their distribution was counted to 
identify the fundamental frequency of the bridge. In contrast to the previous studies that focused on avoiding 
differences (e.g., by trying to reduce variation, driving in the same lane, and using the same speed), this 
methodology encourages the introduction of variability in drive-by measurements to filter bridge frequencies, 
rendering it particularly compelling for practical engineering applications. The proposed methodology was 
validated through numerical studies, including the Monte Carlo method, and field tests using city buses. The 
results demonstrated that the method can effectively eliminate the effects of road roughness, environmental 
noise, and vehicle parameter variations and accurately identify the bridge frequency.   

1. Introduction 

Bridge frequencies represent a fundamental aspect of bridges, of
fering insights into critical bridge behaviors such as bearing conditions 
and the characterization of resonance phenomena under periodic 
loading [1]. Measuring frequencies is crucial for bridge health moni
toring and bridge seismic design [2]; however, the conventional method 
of measuring bridge frequencies using sensors mounted on bridges faces 
several challenges. These challenges include high labor expenses, po
tential hazards associated with on-site installation, traffic disturbances, 
and maintenance costs for sensors [3]. This leads to high costs and 
significant delays in implementing bridge health monitoring systems for 
many bridges [4]. A promising alternative to conventional approaches is 
the drive-by bridge inspection method, which has recently gained 
popularity as an active area of research. This method leverages vehicles 

as mobile sensors to extract dynamic bridge information through a 
vehicle-bridge interaction (VBI) process [5]. As vehicles travel over a 
bridge, the resulting vibrations reflect the dynamic properties of the 
bridge in response [6,7]. This approach requires minimal instrumenta
tion on the vehicle and offers a potential solution to acquire key bridge 
information efficiently and economically [8]. 

Implementing a drive-by approach within public transit systems for 
routine monitoring of bridges represents a prominent area of interest in 
the field [9,10]. For instance, if city buses that operate on a daily basis 
can be effectively utilized to inspect bridges in major urban areas, this 
can lead to efficient resource usage and significant cost reduction in 
monitoring, making it an ideal objective for the application of drive-by 
inspection methods [11]. This is particularly important for the moni
toring of short- and medium-span bridges. However, in practice, it is 
difficult to extract bridge frequencies from buses. Currently, most 
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studies on drive-by monitoring focus on developing and verifying 
methodologies in numerical studies, controlled laboratory environ
ments, and small-scale structures using specialized vehicles [12]. Drive- 
by measurements using ordinary vehicles on normal bridge structures 
are prone to large uncertainties. The amplitude of the spectral peak 
associated with the bridge frequency can be low, and interference sig
nals caused by roughness components or vehicle dynamics may obscure 
the signal of interest [13]. Non-bridge frequency peaks are often com
bined with a weak bridge frequency peak (or a complete lack thereof), 
which can lead to misleading frequency identification [1]. Therefore, 
the identification of bridge information from the complex and varied 
signal components in vehicle responses is a critical issue in the appli
cation of drive-by methods. 

In this regard, many efforts have been made in previous studies to 
eliminate the vibration components of the interference and extract the 
bridge frequency from the vehicle response. For example, Yang et al. 
[15] proposed the utilization of the contact point (CP) response between 
a bridge and a vehicle for measuring the bridge frequency; furthermore, 
it was discovered to be unrelated to vehicle frequency. The effect of 
roughness can be eliminated by subtracting the CP responses of two 
adjacent axles or trailers, and the bridge frequency can be identified 
from the resulting residual response [14,15]. However, in engineering 
applications, such methods may require adjacent axles/trailers to follow 
the same trajectory, and use special vehicles and sometimes shakers 
[14–17]. These are not always available in practice, and their applica
tion in buses or other ordinary/commercial vehicles for daily moni
toring purposes is even more difficult. 

An alternative approach involves the application of cross-spectral 
estimation. Nagayama et al. [1] utilized a cross-spectral density func
tion estimation technique to extract bridge frequency as a common vi
bration component among the responses of two moving vehicles. The 
effectiveness of this method was verified through field tests. Lan et al. 
[18,19] experimentally obtained the bridge frequency as a signal com
monality across various sensors mounted on an ordinary truck. In the 
cross spectrum obtained using these methods, the peaks unrelated to the 
bridge frequencies were weakened. However, their performance is 
influenced by factors such as speed, road roughness, and vehicle weight, 
and they do not always succeed. The multi-vehicle or multi-sensor 
approach used in these studies is sometimes inconvenient or costly for 
real-world operations (e.g., passing two or more equipped buses 
simultaneously on a short-span bridge may be inconvenient or even 
impossible). Importantly, these methodologies cannot be applied to the 
vast amount of existing data collected from single sensors on individual 
vehicles, leading to a significant underutilization of the available data 
resources. Nevertheless, the performance of these methods on buses in 
daily operation within public transportation systems remains an area 
worth exploring. 

Bridge frequencies, as common vibrational components, can mani
fest across different runs of a vehicle, whereas the vibration components 
related to road roughness and vehicle dynamics among different vehicle 
passages tend to differ. Typically, it is difficult for vehicles to follow the 
same trajectory across bridges in different runs; therefore, the road 
roughness traverses and the vehicle vibrations caused by it are different. 
Because of factors such as speed variation, the vibration components 
related to vehicle dynamics (including engine vibrations) are also likely 
to differ. Furthermore, environmental noise, another contributor to 
vehicle vibrations, possesses random characteristics. Based on this, an 
algorithm can be developed to extract signal commonalities (i.e., bridge 
frequencies) from multiple runs of buses (but not limited to buses). 
Cross-spectral estimation forms the foundation of this algorithm, with its 
primary function being to weaken peaks unrelated to bridge frequencies. 
However, this method can only be applied to a pair of signals. The crux 
of the algorithm design involves rationally calculating the correlations 
among a large number of signal inputs and subsequently devising stra
tegies to extract the bridge frequencies from them. It does not impose 
stringent requirements on vehicle parameters (such as weight and 

speed) or road conditions, thereby enabling routine bridge monitoring 
by using ordinary vehicles. The proposed algorithm represents a sig
nificant step towards the commercial or industrial implementation of 
drive-by methods, which is also the primary motivation behind the 
present work. 

This study proposes a novel coherence-PPI algorithm based on the 
Bayesian Framework and applies it to city bus bridge monitoring to 
extract bridge frequencies. It consists of three processes: (1) coherence 
computation, (2) threshold determination, and (3) selection of PPs for 
frequency identification. The underlying idea is to recognize the bridge 
frequency as a common vibration component across various vehicle 
runs. To validate the proposed algorithm, numerical studies and field 
tests are conducted. First, a VBI model for the bus rear axle system was 
established, and numerical studies, including Monte Carlo methods, 
were conducted to investigate the effectiveness and robustness of the 
proposed method under various conditions (e.g., road roughness, envi
ronmental noise, and vehicle parameter variation). Subsequently, the 
feasibility of the proposed method in engineering practice was verified 
based on the results of field tests performed on the Olari and Matti 
bridges in Finland using city buses. 

The remainder of this paper is organized as follows: Section 2 de
scribes the three-step coherence-PPI algorithm for bridge frequency 
identification. Section 3 establishes a VBI model based on the rear-axle 
system of a bus and numerically examines the performance of the pro
posed algorithm under various scenarios. Section 4 describes the field 
tests using urban buses and their results, demonstrating the practical 
effectiveness of the proposed algorithm. Finally, Section 5 concludes the 
paper. 

2. Bridge frequency identification algorithm 

The proposed algorithm consists of three steps for identifying bridge 
frequency using the responses of a vehicle from multiple runs: (1) the 
coherences are calculated from all the combinations of vehicle runs to 
interpret the relationship between the signals. (2) A Bayesian framework 
is established to statistically determine the threshold. (3) The PPs are 
selected based on the threshold, and their distribution is counted to 
identify the fundamental frequency of the bridge. The fundamental idea 
is to identify the bridge frequency as a common vibration component 
among different vehicle runs. 

2.1. Step 1: Coherence computation 

This section presents the calculation strategy for coherence in 
multiple-vehicle runs. Typically, there are four main contributors to 
vehicle vibration: bridge vibration, road roughness, vehicle dynamics, 
and environmental noise [1,19]. In the frequency spectrum, the peaks 
associated with bridge vibration are usually not prominent when 
compared to others. Yet, to some extent, they are deemed to exhibit a 
commonality across different vehicle runs. Peaks related to road 
roughness and vehicle dynamics tend to vary with different trajectory, 
speed, etc. Environmental noise is random. This inspires the use of 
coherence, which is a measure used to compare the relationship between 
two signals, to tackle the problem [20]. The coherence between the two 
signals is mathematically expressed as: 

Cxy(f ) =
⃒
⃒Gxy(f )

⃒
⃒2

Gxx(f )Gyy(f )
(1)  

where Gxy(f) is the cross-spectral density of signals x and y, Gxx(f) is the 
power spectral density of signal x, and Gyy(f) is the power spectral 
density of signal y. 

For a vehicle traveling on the same bridge multiple times, the co
herences are computed for all possible combinations of vehicle runs (see 
Fig. 1). If a car travels n times, then the total number of coherences is 
N = C2

n . This represents the computation of the combinations that can be 
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calculated using Eq. (2). The coherence of the two vehicle runs, {Xi}, is 
calculated using Eq. (1), which is a vector, and [X] is a matrix composed 
of N coherence vectors. 

C2
n =

n!
2(n − 2)!

=
n(n − 1)

2
(2)  

2.2. Step 2: Threshold determination 

This section aims to determine the threshold that maximizes the 
occurrence of bridge-related frequencies. The Bayesian theorem [21] 
provides a mathematical framework. Event B is defined as the attain
ment of the target frequency, and event H is defined as the occurrence 
when the coherence value is greater than or equal to a certain value (i.e., 
the threshold). The likelihood P(H|B), represents the probability that, 
when the target frequency is known, its corresponding coherence value 
is greater than the threshold. The prior P(B), is the probability of 
attaining the target frequency in the absence of a threshold, whereas the 
evidence P(H), is the probability that the coherence value is greater than 
the threshold. The posterior P(B|H), that is, the probability that the 
target frequency can be obtained when the threshold is given, can be 
calculated as: 

P(B|H) =
P(H|B)Â⋅P(B)

P(H)
(3) 

The 0–50 Hz frequency range is uniformly divided into q intervals 
(θ1, θ2…,θq), each corresponding to a 50

q interval. Subsequently, a fre
quency interval θ ∈ [Fi, Fj] can be defined, within which the bridge fre
quency is contained; the event Bθ can be denoted as the identification of 
the bridge frequency. Assuming that the coherence matrix [X] contains a 
sufficient amount of data and letting t be the percentile where the 
threshold resides, event H(t) represents the occurrence when the 
coherence value is greater than t, with the corresponding probability 
being P[H(t)]. P[H(t)|Bθ ] represents the probability that, when the bridge 
frequency is known, its corresponding coherence value is greater than t. 
The probabilities P[H(t)|Bθ] and P[H(t)] belong to the probability density 
distributions D1(t) and D2(t), respectively, and P(Bθ) equals a constant 
value φ. For two discrete distributions, the original Bayesian equation 
can be expressed as: 

P[H(t)|Bθ ] =

∫ 1

t
D1(t)dt ≈

∑w− 1

k=0
D1

(

t+
1 − t

w
k
)

1 − t
w

(4)  

P[H(t)] =
∫ 1

t
D2(t)dt ≈

∑w− 1

k=0
D2

(

t+
1 − t

w
k
)

1 − t
w

(5)  

M(t) = P[(Bθ|H(t)) ] =
P[H(t)|Bθ ]⋅φ

P[H(t)]
=

φ
∑w− 1

k=0 D1
(
t + 1− t

w k
)

1− t
w

∑w− 1
k=0 D2

(
t + 1− t

w k
)

1− t
w

(6) 

In these equations, w represents the number of divisions in the 
discrete distribution. For example, with an interval of 0.01 (1%), the 
value of w is 100. 

Now, the problem of threshold selection is transformed into finding a 
value that maximizes the target function. Let τ be the value that maxi
mizes the target function M(t), such that: 

τ = argmaxτM(τ) (7) 

When the distributions D1(t) and D2(t) are known, iterative algo
rithms can be employed to determine this τ. The algorithm designed in 
this study is illustrated in Fig. 2, where the initial threshold t, is set to 0, 

Fig. 1. Coherence computation process.  

Fig. 2. Iterative algorithm.  
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number of divisions w, is 100, and threshold increment s, is 0.01. This is 
the strategy used in this study to find the threshold. Although a math
ematical framework for this method is provided herein, in practical 
cases, obtaining D1(t) can sometimes be challenging. In such cases, 
empirical thresholds can be adopted as discussed in the following 
sections. 

2.3. Step 3: Selection of PPs and frequency identification 

This step counts the probability of each frequency interval above the 
threshold. Dividing the 0–50 Hz frequency range into 100 intervals (θ1, 
θ2…,θ100), each corresponding to a 0.5 Hz interval, ideally the interval, 
θ, containing the bridge frequency will exhibit the maximum probability 
value, M(τ). 

During the operation, the peaks in the coherences above the 
threshold Pi, and their corresponding frequencies Fi, are collected to 
construct a new matrix [P] (e.g., a prominent peak matrix): 
[

P1P2⋯Pn
F1F2⋯Fn

]

= [P] (8) 

Then, the PP occurrence in each frequency interval is counted. The 
interval corresponding to the maximum occurrence indicates the 
fundamental frequency of the bridge. This process entails finding the 
peaks in the PP distribution (see Fig. 3); in this step, the bridge frequency 
is deemed identifiable. 

Notably, this methodological framework is premised on the avail
ability of large amounts of data, and the identified frequency is a sta
tistical result. That is, when selecting the threshold, the amount of data 
retained after threshold truncation must be statistically sufficient to 
demonstrate the result. This is discussed in the following sections. 

3. Numerical study 

To verify the proposed bridge frequency identification algorithm and 
investigate the influences of various factors, numerical studies, 
including VBI simulations and the Monte Carlo method [22], were 
carried out. The following describes the formulation of the VBI system, 
simulation of road roughness, and addition of environmental noise. The 
factors considered in method validation included road roughness, 
environmental noise, vehicle parameter variation, and number of runs. 
The goal was to investigate the effectiveness and robustness of the 
proposed algorithm under various factors. 

3.1. VBI formulation 

Several models have been developed to simulate the VBI process. 
Some authors have modelled the vehicle as a single vertical force or as a 
series of constant forces [23], whereas others have considered the 
vehicle as a lumped sprung mass model [5,24]. A more comprehensive 
vehicle model is the 2 degrees of freedom (DOF) quarter-car model, in 
addition to the 4-DOF models [6,25,26]. In this study, a 2-DOF quarter- 
car model was employed to represent the rear axle system of the bus (see 
Fig. 4). This simplification was used in the study by Liu et al. [13], who 
showed that neglecting the excitation of the front suspension vibration 
at the rear axle system is equivalent to adding a certain amount of noise 
to their results, which is acceptable. An unconventionally high level of 
noise (noise level = 10%) was adopted in this study, whereas previous 
research often considered 5% as a high noise level [27,28]. The utili
zation of this model is advantageous in that it enables a good trade-off 
between model complexity and computational efficiency, which facili
tates the implementation of computationally demanding methods such 
as Monte Carlo simulations. 

The bridge model used in this study was a simply supported 
Euler–Bernoulli (EB) beam. Each node of its finite element (FE) model 
consisted of two DOFs: vertical translation and rotation. The bridge 
model is composed of n elements, n+1 nodes, and 2n DOFs (excluding 
the vertical constraints at either end). It has a length of L, uniform 
flexural rigidity of EI, and mass per unit length of m. Additionally, the 
damping of the bridge is approximated by mass-stiffness proportional 
Rayleigh damping. The VBI model used in this study is shown in Fig. 5. 
The governing coupled equations for the VBI system are given by: 

[Mv]

{

ÿv

}

+ [Cv]

{

ẏv

}

+ [Kv]{yv} = {Fcv} (9)  

[Mb]

{

ÿb

}

+ [Cb]

{

ẏb

}

+ [Kb]{yb} = {Fcb} (10)  

where (9) and (10) are the equations of motion associated with the 
vehicle and the bridge, respectively. Matrices [Mv], [Cv] and [Kv] corre
spond to the mass, damping, and stiffness of the vehicle, respectively, 
whereas [Mb], [Cb] and [Kb] represent the mass, damping, and stiffness 
matrices of the bridge model, respectively. In these equations, 

{
yv
}

denotes the displacement vector of the vehicle, and 
{
yb
}

is the nodal 
displacement of the bridge system. Additionally, {Fcv} and {Fcb} repre
sent the time-varying interaction forces on the vehicle and bridge, 
respectively. 

The subsystem matrices and response vector for the vehicle model 
are as follows, where the body and axle masses are denoted by mv and 
mt , the suspension and tire damping by cs and ct , and the suspension and 
tire stiffness by ks and kt, respectively. The vertical displacements of the 
vehicle body and axle are denoted uv and ut, respectively. 

[Mv] =

[
mv
mt

]

(11)  

[Cv] =

[
cs − cs
− cs cs + ct

]

(12)  

[Kv] =

[
ks − ks
− ks ks + kt

]

(13)  

{yv} = [ uv ut ]
T (14) 

The Newmark-Beta method was used to obtain the dynamic re
sponses of the vehicle through the VBI process. The parameters β and γ of 
the Newmark-Beta method are selected as 0.25 and 0.5, respectively, as 
suggested by many studies [1,27,29]. 

Fig. 3. PP distribution.  
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3.2. Simulation of road roughness 

In this study, road roughness was simulated according to ISO 8608 
[30], which can be characterized using a power spectral density (PSD) 
function given by [27]: 

Gd(ns) = Gd
(
ns,0

)
(

ns

ns,0

)− ω

(15) 

where ns represents the spatial frequency and ns,0 is the reference 
spatial frequency set at 0.1 m− 1. The constant ω equals 2, and the 
roughness coefficient Gd

(
ns,0

)
, is determined based on different rough

ness classes [31]. Table 1 presents the five roughness classes that could 
potentially arise in engineering applications, along with their corre
sponding roughness coefficients. 

A standard zero-mean real-valued stationary Gaussian process can 
then be used to simulate the surface roughness profile as follows: 

r(x) =
∑N

i=0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Gd
(
ns,i

)
Δns

√

cos
(
2πns,ix+φi

)
(16)  

where N denotes the number of harmonic waves used to construct the 
roughness profile. ns,i represents the i-th spatial frequency, while Δns =

0.01cycle/m is the sampling interval of the spatial frequency. φi repre
sents the random phase angle of the i-th cosine function, which is 
sampled uniformly at random from the interval [0,2π]. 

3.3. Addition of environmental noise 

Another primary source of noise, environmental noise, can be added 
to the vehicle acceleration signal in the form of Eq. (17) [27,32]. where 
üp represents the polluted acceleration data, Ep is the noise level, Ns is 
the standard normal distribution, and σüv is the standard deviation of the 
vehicle response üv. 

üp = üv +EpNsσüv (17)  

3.4. Numerical results: Pure VBI process 

Simulations were conducted to validate the proposed algorithm 
using the VBI model described above. The initial vehicular parameters 
were adopted from Nagayama et al. [1] with some modifications to 
represent a truck or bus. The specific parameters are: mv = 1.0 × 104 kg, 
mt = 1.0 × 103 kg, cs = 1.0 × 104 N s/m, ct = 0, ks = 4.0 × 105 N/m, kt =

3.5 × 106 N/m, and v = 7.5 m/s. Further discussion on the impact of 
variations in vehicular parameters on the results is presented in the 
following sections. The bridge parameters are: m = 2000 kg/m, EI =
6.06 × 1010 N m2, L = 45 m. Additionally, the sampling rate in the 
simulation is 1000 Hz (or the time step is 0.001 s). It should be noted 
that the purpose of this section is only to verify the method and not to 
reproduce the actual behavior of the field test. 

First, a pure VBI process without road roughness or environmental 
noise was studied. The VBI model presented herein simulates the rear 
axle system of a bus. The vehicle response used in the simulation was üt, 
which corresponds to the accelerations captured by the sensor mounted 
on the rear axle in the on-site experiments. As shown in Fig. 6a, under 
ideal conditions, the vibration response of the rear axle tends to “mimic” 
bridge vibration to some extent. This is more apparent in the frequency 
spectrum (see Fig. 6b), where the first and second mode frequencies of 
the bridge are clearly identifiable in the vehicle’s frequency spectrum, 
although the amplitude in the vehicle is lower. In this scenario, the 1st 
modal frequency of the bridge can be identified as the largest peak in the 
vehicle spectrum, which is used as a reference value for the following 
scenarios. Notably, the vehicle frequency appeared to be indistinguish
able from the spectrum in this case. This is primarily because of the high 
damping adopted in the vehicle model. In fact, commercial vehicles, 
such as buses, often have high damping, and obtaining their frequencies 
usually involves errors or is even impossible. The high damping value 
used in this study aligns with engineering practice. 

3.5. Numerical results: Common VBI scenarios 

In practice, vibrational components from sources of road roughness 
and environmental noise usually dominate the vehicle responses. 
Employing the vehicle and bridge parameters above, and considering 
“A” class road roughness and 10% environmental noise, the responses of 
the vehicle and bridge are shown in Fig. 7. Although some peaks 
appeared to be related to the bridge frequency, it was difficult to 
determine the bridge frequency from the frequency spectrum. 

Fig. 4. Simplified model for rear axle system.  

Fig. 5. VBI model.  

Table 1 
Roughness coefficient for different roughness classes.  

Class A B C D E 

Gd
(
ns,0

)/
10− 6m3 0 − 25 25 − 27 27 − 29 29 − 211 211 − 213  
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The application of the proposed algorithm can be demonstrated by 
assuming that the bridge frequency is the most common vibrational 
component across different vehicle passes. When applying the proposed 
algorithm, in addition to considering road roughness and environmental 
noise, variations related to the speed and weight of the vehicle (e.g., 
potentially varying passenger loads for a bus) should be considered. 

These are expressed in the following forms: 

mv,i = mv,0 +Numd (18)  

vi = v0 ± Nuvd/2 (19)  

where mv,i and vi are the body mass and speed of the vehicle in the i-th 

Fig. 6. Pure VBI responses: (a) time-domain response, (b) frequency-domain response.  

Fig. 7. VBI responses in common scenarios: (a) time-domain response, (b) frequency-domain response.  

Fig. 8. Density distributions: (a) D1(t), (b) D2(t).  
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run, mv,0 and v0 represent the initial body mass and speed of the vehicle, 
respectively. md and vd are the deviations in the weight and speed for all 
vehicle runs, respectively, and Nu represents a uniform distribution in 
the interval [0,1]. It is thought that a conventional bus can carry up to 80 
passengers [33]. Considering that the average weight of passengers is 
70 kg and the rear axle bears half of the weight, the weight deviation, 
md, can be taken as 2800 kg. The speed of buses varies across regions and 
periods. According to our field measurements, the approximate speed 
deviation for passing through the same bridge was 5 m/s. 

The probability density distribution of P[H(t)|Bθ ], denoted as D1(t), 
can be obtained (zero values in the coherences are not counted and are 
the same below) by running 100 simulations of vehicle passages on the 
roughest road profile (E class), as shown in Fig. 8a. Even in the roughest 
case, bridge frequency was more likely to be in the higher percentiles, 
which is consistent with this assumption. The probability density dis
tribution of P[H(t)], D2(t), appeared normal, as shown in Fig. 8b. The 
algorithm presented in Fig. 2 can be used to compute P[(Bθ|H(t)) ] and 
find τ (see Fig. 9). This indicates that the maximum value of P[(Bθ|H(t)) ]
should be obtained at a large t value. For larger values of t, the result 
increases as t increases; however, sufficient data must be retained to 
ensure the statistical significance of the final results. 

According to the 3-Sigma rule in statistics [34], that is, in a normal 
distribution, approximately 68% of the observations fall within one 
standard deviation from the mean (τ = 0.84), 95% fall within two (τ =

0.975), and 99.7% fall within three (τ = 0.9985). By simply estimating 
that we need 100 data points above the threshold to ensure the signif
icance of the results, the above three τ values require 48, 264, and 781 
vehicle passages, respectively. Collecting hundreds of passages may take 
weeks for a city bus to operate normally, during which time factors, such 
as temperature, could change the bridge frequency. Thus, τ = 0.84 may 
be chosen as the threshold in this study, striking a tradeoff between 
ensuring P[(Bθ|H(t)) ] and retaining the amount of data. 

The probability distributions across all roughness cases are found to 
be similar, with D1(t) having bridge frequency likely in the higher per
centiles, and D2(t) is roughly normal. The distribution of D1(t) appears 
to be unaffected by the road roughness. The near-normal distribution of 
D2(t) may be associated with the road roughness simulation based on the 
Gaussian process as well as the noise simulation generated from the 
Gaussian distribution. Nevertheless, the mathematical framework of the 
method does not depend on a particular distribution. In practice, a 
relatively large threshold can be selected empirically, as long as the 
assumption that the bridge frequency is more likely to be in the higher 
percentiles holds true. 

As seen in Fig. 10, the largest peak in the PP distribution obtained by 

the proposed algorithm can clearly indicate the bridge frequency across 
all levels of road roughness, i.e., θ ∈ [3.5 Hz,4.5 Hz]. The frequency of 
the bridge was 4.2 Hz. Owing to many factors (e.g., vehicle weight), 
under the normal operation of a bridge, its frequency may fluctuate 
within a small range. This is a common problem with the drive-by 
approach; the bridge frequency extracted from the car is not neces
sarily the same as the bridge frequency in free vibration. For example, 
considering only the situation where the vehicle has the greatest influ
ence on the bridge frequency (when the vehicle is at the midpoint of the 
span), the 1st mode frequency of a simply-supported-beam bridge can be 
theoretically estimated using Eq. (20) [35]. In this equation, ωv and ωb 
can be computed as ωv = fv,1 × 2π and ωb = fb,1 × 2π respectively, rep
resenting the original frequencies of the vehicle and bridge. Other var
iables present the same as previously defined. 

ω̌2
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ω2
v

2
+

ω2
b

2
+
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v

mL
+
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+
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+
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− ω2
vω2
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(20) 

Through calculations, factoring in the maximum and minimum 
vehicle weights, the bridge frequency range would lie between 4.22 and 
4.24 Hz, which falls within the identified range. 

3.6. Numerical results: Effect of driving cycles 

The effect of the number of vehicle passes on the results is also 
investigated. Utilizing the same vehicle and bridge parameters as before, 
10% environmental noise, and the variations in vehicle speed and 
weight, the algorithm results are depicted in Fig. 11, while considering 
“E” class road roughness. When the results are obtained from a smaller 
number of vehicle passes, the peaks associated with the bridge fre
quency may not be identified well. Hence, the driving cycles should 
ensure statistical significance of the results. 

The prominence index, PI, coefficient of variation, CV, and clarity 
index, CI, can be defined using Eqs. (21), (22), and (23), to evaluate the 
results of the PP distribution obtained using the algorithm. Generally, a 
higher PI value indicates a more prominent maximum peak (the 
maximum peak value is much higher than all the other values), and a 
lower CV value indicates a more stable distribution. The clarity index, 
CI, composed of both measures, can be used to some extent to assess the 
reliability of results, with higher values indicating more reliable 
outcomes. 

PI = Pmax/μp (21)  

CV = σp/μp (22)  

CI = PI/CV (23)  

where Pmax is the largest peak value of the PP distribution, μp is the mean 
value of the PP distribution, and σp represents the standard deviation of 
the PP distribution. 

Table 2 lists the indices corresponding to the numbers of selected 
vehicles. When the number of runs was relatively small (e.g., 10 runs), 
the maximum peak did not point to the bridge frequency, and the noise 
peak dominated the distribution. In this case, the PI is directed towards 
the noise peak, which was relatively high (1.50), and the CV value was 
the highest (0.26), leading to a low CI value (5.77). As the number of 
runs increased, the maximum peak shifted towards the bridge fre
quency. The PI value stabilizes between 1.33 and 1.41, while the CV 
value gradually decreases and then stabilizes (0.12–0.13). Meanwhile, 
the CI value increases and tends to stabilize (10.62–11.08), representing 
reliable results after about 50 runs. 

3.7. Numerical results: Monte Carlo simulation 

Considering the fact that bridge monitoring is a long-term process, 
and that vehicles, especially buses, may experience parameter variations Fig. 9. Computed results from Iterative algorithm.  
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other than speed and weight during long-term operation, this section 
uses a Monte Carlo simulation to validate the effectiveness of the pro
posed algorithm under complex parameter variations. The underlying 

concept of the Monte Carlo simulation is to use randomness to solve 
problems that might be deterministic in principle [22]. Vehicle param
eters that need to be considered based on the above model, in addition to 
speed and weight, include axle mass, suspension, and tire damping, as 
well as suspension and tire stiffness. These are expressed as follows: 

mt,i = mt,0 ± Nudmt,0 (24)  

cs,i = cs,0 ± Nudcs,0 (25)  

ct,i = ct,0 ± Nudct,0 (26) 

Fig. 10. Distribution of PPs for different roughness classes obtained from the proposed algorithm.  

Fig. 11. Distribution of PPs for different vehicle runs.  

Table 2 
Indexes corresponding to the number of runs.  

Runs 10 20 50 100 200 

PI  1.50  1.33  1.41  1.38  1.33 
CV  0.26  0.16  0.13  0.13  0.12 
CI  5.77  8.31  10.85  10.62  11.08  
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ks,i = ks,0 ± Nudks,0 (27)  

kt,i = kt,0 ± Nudkt,0 (28)  

where mt,i, cs,i, ct,i, ks,i, and kt,i are the axle mass, suspension damping, 
tire damping, suspension stiffness, and tire stiffness at the i-th run, 
respectively, whereas mt,0, cs,0, ct,0, ks,0, and kt,0 denote the initial pa
rameters of them. Nu represents a uniform distribution in the interval 
[0,1], and d stands for the maximum degree of deviation that may occur 
during long-term operation. 

Here, using the initial vehicle parameters and environmental noise 
conditions (10% noise level), as described earlier, we considered the 
possibility of a 25% variation (d = 0.25) in each vehicle parameter 
during long-term operation. Based on the results presented in Table 2, 
50 or more runs are sufficient to obtain a good algorithm performance. 
Random parameters are used to generate samples via the VBI simula
tions, with 50 samples (i.e., 50 vehicle passes) as one algorithm input, 
denoted by [X]q (q = 1, 2, 3…), and the output is Pq(Bθ|Hτ). When the 
algorithm is run 2000 times for each road roughness, the Monte Carlo 
result for that roughness level should be 1

2000
∑2000

q=1 Pq(Bθ|Hτ), and the 

likelihood would be 1
2000

∑2000
q=1 Pq(Hτ|Bθ), that is, the cumulative proba

bility of D1(t) (see Fig. 12a). As shown in Fig. 12b, the evidence is that 
1

2000
∑2000

q=1 Pq(Hτ), which is the cumulative probability of D2(t). As shown 
in Fig. 12a, the bridge frequency was more likely to be in the higher 
percentiles across all roughness levels under complex scenarios 
involving the changes in all vehicle parameters and the presence of 
environmental noise, and their distributions exhibited substantial sim
ilarity. Fig. 12b clearly shows the near-normal distribution of the 
coherence values across various cases. Accordingly, the PP distributions 
were similar, even under complex scenarios involving the changes in all 
the vehicle parameters and the presence of environmental noise (see 
Fig. 13). 

As shown in Table 3, upon the introduction of a variety of variable 
parameters, the CI values in the Monte Carlo results were high, affirming 
their reliability. Thus, the effectiveness of the algorithm under general 
conditions was validated using the Monte Carlo method. Furthermore, 
in contrast to the previous studies that aimed to avoid differences (e.g., 
by trying to reduce variation, driving in the same lane, and using the 
same speed), these findings encourage the deliberate addition of vari
ability to filter bridge frequencies, making this approach particularly 

attractive in practical engineering applications. Another insight is that 
measurements obtained from multiple distinct vehicles can filter the 
bridge-related components in the signal, because the distinct charac
teristics of each vehicle infuse variability into the non-bridge compo
nents of the signals. There is an existing body of research focused on 
crowd-sensing vehicle monitoring; however, most of these studies are 
currently in the theoretical or laboratory experimental stages [36,37]. 
This study corroborates their feasibility from a unique perspective. 

4. Field test verification 

4.1. Description 

In 2018, field experiments were conducted on two bridges located in 
Finland, namely the Olari and Matti bridges, as shown in Figs. 14 and 15. 
The Olari Bridge is a three-span continuous bridge, with some of its 
parameters listed in Table 4. The Matti Bridge is a four-span continuous 
bridge, and a few of its parameters are listed in Table 5. Sensors were 
placed on the bridge structure for direct measurements to obtain the 
actual frequencies of the bridge as a reference. The accelerometers used 
were PCB model M352C68, the data acquisition device used was 
NI9234, and the measurement software employed was PC + LabVIEW. 
The sampling frequency for the measurements was set to 1650 Hz. 

For the measurement vehicles, buses from the Finnish company HSL, 
serving the urban public transportation system, were used, as illustrated 
in Fig. 16a. The empty vehicle weight was approximately 1.51 × 104 kg, 
and the sensors were installed on the rear axle of the bus (see Fig. 16b). 
The accelerometers used on the bus were the same as those on the 
bridge, namely PCB’s model M352C68. The data acquisition system was 
the imc Cronos PL2, and the measurement software was the PC + imc 
STUDIO. The sampling frequency for the measurements was set at 1000 
Hz. The sensors continuously collected data during the bus’s operation, 
and instances of crossing the bridges were subsequently selected from 
the measured data. The measurements were performed by repeatedly 
driving the bus along the same route in the same direction. Olari bridge 
was crossed 12 times, and Matti bridge was crossed 13 times. 

When employing the proposed algorithm, the signal segments should 
be of equal length (i.e., the same time period) to ensure that they have 
the same frequency resolution. In this study, equal-length signal seg
ments were used across various bus passes (3 s segment). Notably, these 
segments should be selected from the signal sections where the entire 

Fig. 12. Cumulative probabilities of: (a) D1(t), (b) D2(t).  
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bus is on the bridge. Two criteria are used to identify the signal segment 
where the bus is on the bridge. First, as shown in Fig. 17, the position of 
the bus can be mapped well using GPS data. Using this information, we 
can approximately segment the period when the bus is on the bridge. 
Second, as depicted in Fig. 18, when the bus passes over the expansion 
joints of the bridges, noticeable peaks in the acceleration signals can be 
observed, which can also be used as an indicator. By correlating these, 
the desired signal segment can be cut off. 

4.2. Field test results 

Fig. 19 presents examples of the spectra obtained from the Fast 
Fourier Transform (FFT) processing of the accelerometers on both the 
bridge and vehicle, with similar results observed in other samples. 
Although there appear to be peaks associated with bridge frequencies in 
the vehicle’s spectrum, it is relatively challenging to directly extract the 
bridge frequencies from it. Another important piece of information is 
that the frequencies of the Olari and Matti bridges can be obtained from 
the spectra of the direct bridge measurements at approximately 10.2 Hz 
and 10.6 Hz, respectively. These frequencies were used as references to 
evaluate the results of the algorithm. 

Considering their complete traversals of 12 and 13 times, the 
computed outcomes for the Olari and Matti bridges utilizing the algo
rithm are shown in Fig. 20. The bridge frequency peaks stand out within 
the distribution of PPs, and their values correspond to the outcomes of 
the direct measurements. As shown in Table 6, the CI values for the Olari 
and Matti bridge are 7.29 and 8.19, respectively, which are close to the 
scenario involving 20 runs in the simulation results. This suggests that 

Fig. 13. Distribution of PPs for different vehicle runs obtained by Monte Carlo methods.  

Table 3 
Mean indexes corresponding to roughness classes.  

Roughness class A B C D E 

PI  1.62  1.60  1.61  1.62  1.62 
CV  0.13  0.13  0.13  0.13  0.13 
CI  12.01  12.02  12.00  12.01  12.01  

Fig. 14. Olari bridge: (a) side view, (b) pavement surface on bridge deck.  
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the proposed algorithm provides satisfactory performance and applica
bility in the real-world implementation of buses for examining bridges. 
It is noteworthy that in addition to augmenting the number of vehicle 
traversals to enhance the identification performance, additional prior 
information, such as a rough range for bridge frequencies, could also 
contribute to bridge frequency identification in real-world scenarios. 
Overall, the findings of this field experiment validated the robustness 
and practicality of the proposed algorithm. 

5. Conclusion 

This paper proposes a coherence-PPI algorithm based on the 
Bayesian framework and applies it to city bus monitoring for bridge 
frequency identification. The algorithm consists of three steps. First, the 
coherences were calculated for all vehicle runs to interpret the signal 
relations. Second, a Bayesian framework was established to statistically 
determine the threshold. Third, the PPs were selected based on the 
threshold and their distribution was counted to identify the bridge fre
quency. The underlying idea is to recognize the bridge frequency as a 
common vibration component across various vehicle runs. The 

Fig. 15. Matti bridge: (a) side view, (b) pavement surface on bridge deck.  

Table 4 
Olari bridge.  

Parameter Details 

Number of spans 3 
Lengths of spans 17.5 m + 27 m + 17.5 m 
Length of deck 65 m 
Min useful width 26.12 m  

Table 5 
Matti bridge.  

Parameter Details 

Number of spans 4 
Lengths of spans 11 m + 21 m + 19.99 m + 16 m 
Length of deck 69 m 
Min useful width 38.05 m  

Fig. 16. City bus for field tests: (a) the view of the bus, (b) sensor installation.  
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effectiveness and robustness of the proposed algorithm were investi
gated through numerical simulations and field tests employing a city 
bus, leading to the following conclusions:  

(1) Under the influence of road roughness and environmental noise, 
the fundamental frequency of the bridge can be successfully 
identified as the largest peak in the algorithm results based on bus 
responses, which is consistent with the results obtained through 
direct measurements. 

Fig. 17. GPS mapping.  

Fig. 18. Selection of bus acceleration signals.  
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(2) Based on the numerical results, the effect of road roughness, 
which is one of the most critical factors affecting drive-by 
methods, was eliminated. Interestingly, poor road conditions 
did not degrade the performance of the proposed algorithm in 
frequency recognition, and the algorithm was not affected by 
roughness levels.  

(3) The frequency identified by the algorithm was a statistical result, 
and a larger number of measurements could improve the clarity 
of the results and ensure reliable frequency estimation. This en
courages the use of more measurements in engineering practice.  

(4) Monte Carlo simulations demonstrated the effectiveness of the 
proposed algorithm and validated that the algorithm was not 
affected by variations in vehicle parameters, including speed and 
mass, during different runs. This is particularly advantageous for 
long-term vehicle-based bridge monitoring, where vehicle pa
rameters may change. 

(5) Instead of attempting to minimize differences, this approach en
courages the introduction of variability in drive-by measure
ments (e.g., varying vehicle parameters and avoiding passing the 
same road surface) to effectively filter bridge frequency, making 
it particularly attractive in engineering practice.  

(6) Field tests performed on city buses validated the feasibility of 
bridge frequency identification using the proposed algorithm for 
engineering applications. 

Despite the findings summarized above, further investigation is 
required to assess the applicability of this method to a broader range of 
bridge and vehicle types. Some simulation results require further 
experimental validation. Moreover, the current numerical study is based 
on a 2-DOF quarter-car model to simulate the rear axle system of a bus, 
and does not represent a full bus system. Future studies should consider 
models with higher DOFs. The frontier of this study is the application of 
the proposed algorithm to crowd-sensing vehicle monitoring. This in
volves using measurements from multiple buses to establish a public- 
transport-based networked urban bridge monitoring system. Moni
toring railway bridges using multi-carriage trains is another avenue of 
exploration. 

Fig. 19. FFT results: (a) Olari bridge, (b) Matti bridge.  

Fig. 20. Distribution of PPs: (a) Olari bridge, (b) Matti bridge.  

Table 6 
Indexes for two bridges.   

PI CV CI 

Olari bridge  1.53  0.21  7.29 
Matti bridge  1.80  0.22  8.19  
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