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A B S T R A C T

Conventional frequency-temperature sweep tests for evaluating asphalt rheological properties are time- 
consuming and resource-intensive. The characterization efficiency can be significantly improved by establish-
ing a robust predictive model that links rheological properties to chemical composition. To this end, this study 
investigates the correlation between asphalt’s chemical and rheological properties and develops precise pre-
dictive models using machine learning techniques. The input features include eleven key functional groups 
measured by Fourier Transform Infrared Spectroscopy (FTIR), while the output variables are the complex 
modulus (|G*|) and phase angle (δ) from Dynamic Shear Rheometer (DSR). Five machine learning algo-
rithms—multiple linear regression, support vector regression, artificial neural network, random forest, and 
eXtreme gradient boosting (XGBoost)—were utilized to construct the predictive models. A Bayesian optimization 
strategy was employed to fine-tune their hyperparameters. Laboratory findings revealed that a strong correlation 
was identified between changes in these functional groups, especially oxygen-containing functional groups, and 
the |G*| and δ values of asphalt binders. The optimized XGBoost model achieved exceptional predictive accuracy, 
with R2 values of 0.9998 for |G*| and 0.9999 for δ. Additionally, SHapley Additive exPlanations (SHAP) values 
were used to elucidate the underlying principles of the predictions. By leveraging FTIR data and rheological 
indicators, this work provides a novel data-driven approach to accurately estimate asphalt binder behaviour, 
reducing experimental effort while ensuring reliable performance evaluation.

1. Introduction

Asphalt properties such as adhesion, rheology, fatigue, etc. are crit-
ical to the life of the pavement [1,2]. Rheological properties, among 
them, determine the deformation behaviour of asphalt binders and 
directly affect the overall performance of the pavement. The rheological 
properties of asphalt binders reflect their viscoelastic characteristics and 
exhibit different mechanical behaviours at different temperatures and 
loading conditions [3,4]. Changes in these properties are closely linked 
to pavement distress such as rutting, fatigue, and cracking [5–7]. For 
instance, rutting is more likely to occur at high temperatures when the 
viscous component of the binder dominates. Therefore, understanding 
rheological properties is essential for preventing pavement distress and 
extending the service life of asphalt pavements. By adjusting the 
composition, modification technology and optimising the material ratio, 

the rheological properties of asphalt can be improved and its adapt-
ability under different environmental conditions can be enhanced.

Testing of asphalt rheological properties, however, is usually time- 
consuming, with full-temperature and full-frequency tests usually tak-
ing several days to complete. For this reason, researchers have attemp-
ted to analyze the factors affecting rheological properties, such as 
chemical composition, to generate the model. Studies have demon-
strated a strong correlation between the rheological properties of 
asphalt and its chemical composition [8–10]. Efforts have been made to 
analyze asphalt composition to predict rheological properties. For 
example, Sultana and Bhasin found that there is a strong relationship 
between the stiffness and strength of binders and their components, and 
these properties increase with the polar fractions [11]. Similarly, Cao 
et al. and Zhang et al. observed that the change in the asphalt’s 
composition due to the addition of polymers can result in better 
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properties at both high and low temperatures [3,12]. Michalica et al. 
predicted the rheological properties at high and low temperatures as 
well as the oxidative aging process by analyzing the composition of 
bitumen from different sources [13]. These studies provide a theoretical 
basis for rapid characterization of asphalt rheological properties.

Despite these findings, current research has limitations: (1) There is 
insufficient exploration of the relationship between chemical functional 
groups and the rheological properties. While four-component and 
elemental analyses provide initial insights into rheological properties, 
these methods are often time-consuming. Establishing a correlation 
between functional group information from Fourier transform infrared 
spectroscopy (FTIR) and rheological properties could significantly 
reduce testing time and improve efficiency. (2) Existing studies pri-
marily establish qualitative relationships between asphalt’s micro-
composition and rheological properties, lacking quantitative accuracy. 
This limits the decision-maker’s ability to make precise adjustments 
without relying on trial-and-error methods. Additionally, these models 
often consider only single effects and fail to account for the nonlinear 
relationships inherent in materials, while small sample datasets further 
reduce prediction accuracy.

Recent advancements in machine learning have enabled its appli-
cation in structural health monitoring, material characterization, per-
formance prediction, and distress detection for civil infrastructure 
[14–18]. Machine learning models can address these limitations by 
handling multi-dimensional and complex data with higher accuracy 
than traditional models [19–22]. For instance, Hosseini et al. predicted 
the modulus and phase angle of different modified binders at low and 
medium temperatures using various machine-learning algorithms [23]. 
Similarly, Ziari et al. accurately predicted the rutting performance of 
asphalt binders modified by carbon nanotubes using neural networks 
and regression models [24]. Arifuzzaman et al. [25] and Tarefder et al. 
[26] successfully predicted the adhesion properties of bitumen by neural 
networks with the combination of laboratory characterization. These 
studies highlight machine learning as a powerful tool for developing 
predictive models for asphalt binder performance.

Based on the above literature review, a strong correlation between 
rheological properties and the chemical composition of bitumen can be 
identified, while machine learning algorithms are considered to be a 
powerful and accurate tool for predicting models. Hence, this study aims 
to establish predictive models linking the rheological properties of 
asphalt binders to their chemical composition using machine learning 
techniques. Asphalt samples with varying parameters (oil source, batch, 
grade, aging level, and bio-extender content) were collected. Rheolog-
ical properties and chemical composition were measured using a Dy-
namic Shear Rheometer (DSR) and FTIR tests, respectively. A 
preliminary analysis of the relationship between rheological properties 
and chemical composition was conducted. Subsequently, an eXtreme 
Gradient Boosting (XGBoost) model was developed, and four other 
common models were tested for comparison. Finally, the contributions 
of input features were interpreted to provide insights into the model’s 
predictions.

2. Materials and methods

Considering the effects of different sources, batches, penetrations, 
aging levels, and extenders, a total of 67 asphalt samples were collected 
(Details of these samples are summarized in Appendix). Short-term 
aging was achieved using the Rolling Thin Film Oven Test [27], while 
long-term aging was conducted using the Pressure Aging Vessel (PAV) 
test [28]. Extended long-term aging involved prolonged PAV testing 
(2PAV: 40 h, 3PAV: 60 h, 4PAV: 80 h, 5PAV: 100 h).

2.1. Fourier transform infrared (FTIR) spectroscopy test

The FTIR tests were conducted via a Nicolet iS50 machine. The 
asphalt binders were first heated to a soft state and a small amount of 

binders was deposited into the testing paper. Before each measurement, 
the system was background-corrected using an empty ATR crystal, and 
then the diamond crystals were gently pressed onto the sample with nine 
replicates over a wavenumber range of 600 cm− 1 to 4000 cm− 1, with 32 
scans per sample. After measurement, the spectra were baseline cor-
rected and smoothed by OMNIC software to obtain the final FTIR 
spectra, as shown in Fig. 1.

The presence of various functional groups and chemical bonds in 
asphalt molecules results in distinct vibrational frequencies, which 
correspond to specific infrared absorption bands [29,30]. From Figs. 1 
and 11 typical absorbance peaks can be identified, each corresponding 
to specific wavenumbers and vibrational modes [31–33]. Although 
some functional groups exhibit absorption peaks between 3000 cm− 1 

and 4000 cm− 1, their variations across samples are minimal, and thus, 
they were not considered as features in this study [34]. It is common to 
evaluate chemical changes of binders by absorption peak area, which 
are effective in distinguishing between different binder samples and 
have been chosen to feature [31]. They are labelled in subsequent 
content as A + wavenumber, e.g. A1700 means the absorption peak area 
of the binder at 1700 cm− 1 wavenumber.

2.2. Dynamic Shear Rheometer tests

The rheological properties of asphalt binders were assessed using a 
Dynamic Shear Rheometer (DSR). The testing protocol included a 
temperature-frequency (T-f) sweep [35] conducted at low, medium, and 
high-temperature levels using three different parallel plate fixtures. The 
testing process and parallel plate configurations are illustrated in Fig. 2. 
Detailed testing parameters and fixture sizes are provided in Table 1.

The rheological properties of asphalt binders are characterized by 
the complex shear modulus (|G*|) and phase angle (δ), which serve as 
the output variables in this study. Master curves were employed to 
explore the relationship from laboratory results based on the time-
–temperature superposition principle [36], as illustrated in Fig. 3. 
Various master curve models [3,37,38] have been developed based on 
this theoretical framework, and the model in this study was selected 
based on the Willams-Landel-Ferry model [39] due to its strong theo-
retical foundation in describing the temperature dependence of visco-
elastic materials.

3. Machine learning theories

Multiple linear regression (MLR) [40] and Support Vector Machine 
(SVM) [41] have been widely used for regression and classification 
tasks. SVM can handle both linear and nonlinear relationships between 
inputs and outputs, achieving high accuracy and robustness even with 
complex datasets. Artificial neural networks (ANN) [42] is another 
powerful tool, which typically owns an input layer, several hidden 
layers, and an output layer, as shown in Fig. 4. Neurons are inter-
connected across layers, with weights determining the influence of one 
neuron on another. Random forest (RF) [43] is a fundamental ensemble 
learning method, in which multiple decision trees are constructed dur-
ing training. Every tree will be trained using a random subset of the 
dataset, reducing overfitting and improving predictive performance. 
eXtreme gradient boosting (XGBoost) [44,45] is a commonly used 
ensemble learning algorithm, offering an efficient implementation of 
gradient boosting. It sequentially enhances each subsequent model using 
gradient descent and incorporates regularization techniques (l1 and l2) 
to penalize overfitting.

Although the aforementioned models are powerful, their perfor-
mance depends on selecting appropriate hyperparameters. To maximize 
predictive accuracy, this study employs Bayesian optimization to 
determine optimal hyperparameters for all models except MLR [46]. 
Bayesian optimization uses a Gaussian Process as a surrogate model. 
Unlike traditional methods that rely on preset combinations, it dynam-
ically evaluates previously tested combinations to select the next set of 
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parameters. By sampling a fixed number of hyperparameters from pre-
defined distributions, it efficiently identifies the optimal combination.

4. Results and discussion

4.1. Correlation exploration based on laboratory data

The FTIR and DSR results of bitumen samples with different effects 
are presented in Figs. 5–7. It can be observed that the FTIR spectra in 
Fig. 5(a) are very similar, indicating that the chemical compositions of 

binders with different sources are nearly identical. Similarly, their 
master curves for |G*| (Fig. 6(a)) and δ (Fig. 7 (a)) are closely aligned, 
suggesting that they exhibit comparable rheological properties. Based 
on the laboratory results, no clear relationship between the chemical 
composition and rheological properties of asphalt from different oil 
sources is evident, necessitating further analysis using machine learning 
tools. A sensitivity analysis of different chemical components to the oil 
source can be quantified using the weight values (Wi) [47,48] in Table 2
(Equations are in the Appendix). All functional groups exhibit varying 
sensitivity to oil sources, with the group around 1030 cm− 1 being the 

Fig. 1. FTIR description of asphalt binder.

Fig. 2. DSR parallel plates.
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most sensitive. Since the asphalt samples are not aged and therefore no 
absorption peak is formed due to the oxidation reaction [49,50], the 
stretching vibrations of C=O around 1700 cm− 1 do not appear, resulting 
in no significant fluctuations across different oil sources.

Variations in production batches of asphalt binders can lead to minor 
differences in binder properties due to inconsistencies in production 
processes. Three asphalt samples, identical except for their batch, were 
selected, and their FTIR and DSR results are shown in Figs. 5(b), 6(b), 
and 7(b). It can be observed that their FTIR spectra overlap almost 
entirely, making it difficult to distinguish between batches based on 
FTIR results alone. Similarly, their master curves, particularly for the | 
G*|, also overlap significantly. This indicates that laboratory results 
alone cannot establish a preliminary relationship between the rheolog-
ical properties of asphalt binders and their chemical composition. The 
Wi of samples from different batches is similar to the effect of oil sources, 
the functional groups exhibit low sensitivity to production batches, with 
a maximum weight value of 20.18 %.

The FTIR spectra and master curves of samples with different pene-
trations are presented in Figs. 5(c), 6(c), and 7(c). The FTIR spectra of 
the samples show a trend of overlapping lines, indicating similar 
chemical compositions, but the peak areas vary slightly due to differ-
ences in the vibrational strengths of the functional groups. From master 
curves, a clear pattern in the rheological properties of the samples is 
evident: the |G*| decreases as the penetration grade increases, while the 
δ increases. The S=O stretching vibrations around 1030 cm− 1 are the 
most sensitive to penetration grade, with a weight value exceeding 44 % 
in Table 2. This suggests that the S=O stretching vibrations significantly 
influence the rheological properties of asphalt binders.

The FTIR spectra and master curves of samples with different aging 

levels are shown in Figs. 5(d), 6(d), and 7(d). Significant variations are 
observed in the spectra, particularly in the S=O stretching vibrations 
(1030 cm− 1) and C=O stretching vibrations (1700 cm− 1). The Wi for 
these two functional groups exceeds 80 %. Specifically, the band area of 
sulfoxide stretching increases with higher aging levels, especially after 
PAV aging. Additionally, the FTIR spectra at 1700 cm− 1 reveal a new 
carbonyl absorption peak, indicating that the asphalt has undergone 
oxidation [51]. These changes in chemical composition lead to varia-
tions in rheological properties. The master curves of |G*| and δ shift 
upward and downward, respectively, as the aging level of the asphalt 
binders increases. This suggests that the increase in the intensity and 
area of sulfoxide stretching, along with the presence of carbonyl groups, 
results in an increase in the elastic component and a decrease in the 
viscous component of the asphalt.

The FTIR spectra and DSR results of neat binders and bio-extended 
binders are shown in Figs. 5(e), 6(e), and 7(e). The primary differ-
ences between these samples are observed in the C-O-C stretching vi-
brations of oxygen-containing functional groups [52,53] (e.g., esters), as 
well as the carbonyl vibrations around 1700 cm− 1 in the FTIR spectra. 
The addition of bio-extenders increases the intensity and area of these 
functional groups, resulting in a high Wi above 68.3 %. The enhance-
ment of these functional group vibrations leads to a decrease in the |G*| 
and an increase in the δ, causing the asphalt to exhibit a more viscous 
component.

Laboratory results show that the chemical information of samples is 
consistent with that in Fig. 1, mainly caused by vibrations of C-H, C=O, 
C=C, S=O, and C-O-C. For fresh binders, their lack of oxidation reaction 
makes the C=O located in 1700 cm− 1 of their FTIR spectra equal to 
0 [49]. These fresh binders can be distinguished from different sources 
by S=O vibrations at 1030 cm− 1 and from different batches of the same 

Table 1 
Details of DSR tests.

Experimental 
information

Values

Temperature 
range

High temperatures Mid temperatures Low temperatures

Temperature/ 
◦C

34, 40, 46, 52, 58, 
64, 70, 76, 82

− 6, 0, 4, 10, 16, 
22, 285, 34, 40

− 30, − 24, − 18, 
− 12, − 6, 0, 4

Frequency/Hz 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.59, 2, 3, 
4, 5, 6, 7, 8, 9, 10

0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.59, 2, 3, 
4, 5, 6, 7, 8, 9, 10

0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.59, 2, 3, 
4, 5, 6, 7, 8, 9, 10

Linear 
viscoelastic 
range/%

1 0.1 0.05

Fixture 
diameter/mm

25 8 4

Fixture gap/mm 1 2 1.75

Fig. 3. Example of master curves.

Fig. 4. Illustration of an ANN.
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source by C-H vibrations at 864 cm− 1. This is because different sources 
and production processes result in various sulphur contents in binders, 
resulting in a large variation in the absorption peak at 1030 cm− 1. 
Similarly, since the binder with higher penetration has more light 
components while the low-penetration binder contains more gums and 
asphaltenes [54], this makes the polar components such as sulphur- 
containing functional groups more variable, causing them to be 

significantly different at 1030 cm− 1. Ageing is due to oxidation reactions 
that cause the binder to form new oxygen-containing functional groups 
and change the sulphur content and chemical structure [55]. As a result, 
oxygen combines with carbon and sulphur in the bitumen to form C=O 
and S=O, which greatly increases the absorption peaks at 1700 cm− 1 

and 1030 cm− 1 and deepens with aging. The biomaterials themselves 
contain a high amount of C=O functional groups, which makes the bio- 

Fig. 5. FTIR results of binders with different effects: (a) source; (b) batch; (c) penetration; (d) aging; (e) extender.
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Fig. 6. Master curves of |G*| with different effects: (a) source; (b) batch; (c) penetration; (d) aging; (e) extender.
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Fig. 7. Master curves of δ with different effects: (a)source; (b)batch; (c)penetration; (d)aging; (e)extender.
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based asphalt material also contain these functional groups and results 
in a different absorption peak at 1700 cm− 1.

These variations in functional groups cause bitumen to exhibit 
different viscoelastic responses. However, the viscoelastic response of 
different asphalts is consistent with changes in temperature and fre-
quency. Both their |G*| and δ decrease and increase, respectively, with 
increasing temperature; and increase and decrease, respectively, with 
increasing frequency. The master curves of asphalt binders with 
different sources and batches are basically consistent with each other 
(Figs. 6(a) and (b) and Figs. 7(a) and (b)), suggesting a small influence of 
oil source and batch on the rheological properties. However, the pene-
tration degree and aging level can cause large variations in the rheo-
logical properties of binders. Specifically, at high temperatures, binders 
with lower penetration have higher |G*| and lower δ show better rutting 
resistance (Fig. 6(c) and Fig. 7(c)). Similarly, binders with high aging 
levels become harder, thus also exhibiting higher |G*| and lower δ at 
high temperatures (Fig. 6(d) and Fig. 7(d)), resulting in better high- 
temperature properties. In contrast, the addition of bio-extenders can 
greatly improve the viscous response of binders. Bio-based binders, even 
at the lowest temperatures, still exhibit lower |G*| and higher δ, 
resulting in better low-temperature cracking resistance.

4.2. Prediction models and discussions

In this study, 25,820 observations were collected from 67 asphalt 
binder samples. The input data consists of 13 features, including 11 
chemical properties, 1 temperature value, and 1 frequency value. The 
outputs represent the rheological properties, namely, the complex 
modulus (|G*|) and phase angle (δ). The dataset was split, with 70 % 
randomly allocated for training and the rest 30 % reserved for testing. 
Model training and hyperparameter optimization were conducted using 
the scikit-learn and scikit-optimize packages in a Python 3.10.7 envi-
ronment. All computations were performed on a workstation at Aalto 

University equipped with Intel Core i9-11900 CPUs and 32 GB of RAM.
As discussed, Bayesian optimization was employed for hyper-

parameter selection in the SVR, ANN, RF, and XGBoost models. For each 
combination of hyperparameters, 5-fold cross-validation (CV) was 
applied, with the negative coefficient of determination (− R2) used as the 
objective function for optimization. R2 can be calculated (see Appendix 
3),

The hyperparameter ranges and the selected values for predicting | 
G*| and δ are summarized in Table 3. It can be observed that the tuned 
hyperparameter values for the |G*| and δ of the asphalt binders are 
nearly identical. This aligns with the fundamental principle that the 
rheological properties |G*| and δ are inherently correlated. The hyper-
parameter optimization process is carried out using Bayesian optimi-
zation. For instance, the process for optimizing the hyperparameters of 
XGBoost is illustrated in Fig. 8. In Fig. 8(a), the optimizer searches for 
the optimal hyperparameter combination that minimizes the − R2 score. 
Here, the contour maps represent the objective function value (− R2 

score) being optimized. The red star in the contour maps indicates the 
currently known optimal solution in the hyperparameter space, which is 
the best hyperparameter combination found so far that minimizes the 
objective function. The red dotted line represents the current best-found 
hyperparameter value during the Bayesian optimization process. Fig. 8
(b) shows that after 10 iterations, the objective function value con-
verges, allowing the selection of the best hyperparameter combination. 
In Table 3, the prefix “FT” is used to denote the optimal hyperparameters 
selected for each model.

To evaluate the performance of the machine learning models, in 
addition to R2, four other evaluation metrics are employed: Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), and Mean Absolute Percentage Error (MAPE), see Ap-
pendix 3. Among all the evaluation metrics, R2 provides an overall 
measure of the fit between the actual and predicted data, with values 
closer to 1.0 indicating excellent model performance. However, when 
the R2 values of all models are close to 1.0, it becomes difficult to 
differentiate their performance. Therefore, additional metrics—MSE, 
RMSE, and MAE—are included in this study. MSE represents the average 
squared difference between real and predicted values and is particularly 
sensitive to outliers. RMSE and MAE measure absolute errors, with 
RMSE assigning greater weight to larger errors, while MAE treats all 
errors equally. To account for relative differences, the percentage-based 
error metric, MAPE, is also employed. Using multiple evaluation metrics 
enables a more comprehensive assessment of the performance of various 
machine learning models [56].

The prediction results for the complex modulus (|G*|) of asphalt 
binders using various machine learning models are presented in Fig. 9. 
We can see that the predicted values for both the training and testing 
datasets are closely aligned across all models, indicating no significant 
overfitting issues. Among the models, the MLR model performs the 
worst, as its predicted modulus values deviate considerably from the 

Table 2 
The weight value of asphalt samples.

Chemical 
composition

Wi / %
Oil 
source

Batch Penetration Aging 
level

Bio 
extender

A726 10.11 16.14 3.07 0.53 0.68
A748 14.13 11.97 8.49 1.07 8.90
A812 8.30 9.12 6.42 2.58 3.81
A864 13.32 20.18 7.88 4.02 5.27
A1030 20.25 14.18 44.31 25.61 15.16
A1378 7.99 3.18 3.62 1.48 0.90
A1460 6.56 4.54 3.21 0.90 1.27
A1600 7.75 10.09 7.86 4.30 3.52
A1700 0 0 0 58.17 57.79
A2855 6.58 7.68 6.35 0.61 1.62
A2924 5.02 2.90 8.79 0.73 1.09

Table 3 
Automatic hyperparameter tuning.

Model Hyperparameters Data type Automatic Tuning range Tuned value for |G*| Tuned value for δ

FT-SVR Regularization parameter Real [1e-6, 1e9] 967131224.9 1934.3
Kernel coefficient Categorical {‘scale’, ‘auto’} ‘scale’ ‘scale’
Degree of the kernel Categorical {1, 2, 3} 3 3
Kernel Categorical {‘rbf’, ‘linear’, ‘degree’, ‘sigmoid’} ‘rbf’ ‘rbf’

FT-ANN Learning rate Categorical {‘constant’, ‘invscaling’, ‘adaptive’} ‘adaptive’ ‘adaptive’
Epochs Categorical {1000, 2000, 3000} 2000 2000

FT-RF Number of trees Integer [10,2000] 2000 2000
Maximum depth Integer [1,50] 32 22
Minimum sample splits Categorical {2, 5, 10} 2 2
Minimum leaf samples Categorical {1, 2, 4} 1 1

FT-XGBoost Number of trees Integer [10, 2000] 1485 1485
Maximum depth Integer [1,50] 34 34
Maximum leaves Integer [1,50] 32 32
Learning rate Real [0.01, 1] 0.1253 0.1253
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ground truth. In contrast, the FT-SVR and FT-ANN models achieve better 
performance, suggesting the presence of strong nonlinear relationships 
between the input features—the asphalt binders’ chemical properties, 
frequency, and temperature—and the output. Notably, the FT-XGBoost 
model outperforms all other models. For R2, it achieves an impressive 
value of 0.9998 on the testing dataset, which is very close to perfect 
prediction. Additionally, the FT-XGBoost model records the lowest 
RMSE value, further highlighting its superior accuracy. Following the 
FT-XGBoost model, the FT-RF model ranks as the second most accurate, 
demonstrating the effectiveness of tree-based models in predicting the 
binders’ rheological properties using chemical features, temperature, 
and frequency data. When tree-based machine learning models are 
utilized, the prediction errors for |G*| are mostly within ± 25 %.

The prediction results for the phase angles (δ) of asphalt binders are 
shown in Fig. 10. When predicting phase angles, it is important to note 
that all predicted values are constrained within the range [0,90◦]. From 
Fig. 10, it is evident that, similar to Fig. 9, the predictions for both the 
training and testing datasets are closely aligned across all five machine 
learning models, confirming that the models are able to generalize well 
to unseen data. Notably, the MLR and FT-SVR models perform better in 
predicting phase angles than modulus, achieving R2 values of 0.9453 
and 0.9989, respectively, on the testing datasets. Furthermore, the FT- 
ANN and FT-RF models show very similar performances, with R2 

values of 0.9994 and 0.9995, respectively, on the testing dataset. The 
FT-RF model achieves a slightly lower RMSE value of 0.6424, indicating 
slightly higher accuracy. Among all models, FT-XGBoost delivers the 
best results in terms of both R2 and RMSE, reaffirming the effectiveness 
of XGBoost in addressing the proposed rheological property prediction 
problems.

To provide a clearer picture of the models’ performance, additional 
evaluation metrics for the employed machine learning models are listed 
in Table 4. The results reveal that the MSE and MAE values decrease in 

the following order: MLR, FT-SVR, FT-ANN, FT-RF, and FT-XGBoost. 
This indicates that the predictive performance for the rheological 
properties of asphalt binders improves progressively in this order, with 
FT-XGBoost demonstrating the best capability. However, when consid-
ering the MAPE metric, the FT-RF model achieves the lowest value for 
predicting the modulus |G*|, with FT-XGBoost as the second best. This 
suggests that FT-XGBoost, while superior in most metrics, exhibits a 
slightly higher average absolute percentage error compared to FT-RF in 
this specific case. For the prediction of the phase angle δ, however, FT- 
XGBoost consistently outperforms all other models across all indicators.

To further explore this phenomenon and explain the machine 
learning model’s prediction results, SHapley Additive exPlanations 
(SHAP) values [57] were employed to evaluate the contribution of each 
feature in the prediction process. SHAP is a method for explaining the 
predictions of machine learning models, based on a game-theoretic 
approach that utilizes classic Shapley values from game theory and 
their related extensions [57]. In this approach, each feature is regarded 
as a “player,” and its contributions to the final outcomes are quantified.

The SHAP value is additive, allowing the contribution of each feature 
to the output to be calculated independently and summed up. This 
property enables accurate and localized interpretations of a model’s 
prediction for a specific input. SHAP values represent the difference 
between the expected model output and the actual output for a given 
input, with the contributions of all features adding up to this difference. 
Widely used in current machine learning model analysis, SHAP values 
offer meaningful and reasonable explanations for prediction results, 
making them a powerful tool for understanding model behavior.

The SHAP values of the FT-XGBoost model for predicting the 
modulus |G*| and phase angle δ in the testing dataset are shown in 
Fig. 11, which provides a clearer understanding of the predictive pat-
terns. Specifically, Fig. 11(a) and 11(c) display the feature importance 
based on the mean absolute SHAP values, while Fig. 11(b) and 11(d) 

Fig. 8. Hyperparameter optimization process for the FT-XGBoost.
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illustrate the impact of all features on the model outputs. From Fig. 11, it 
is evident that the top five most important features for predicting both | 
G*| and δ are temperature, frequency, A1030 (sulfoxide stretching), 
A1378 (CH3 bending), and A1600 (C=C stretching), although the exact 
order of importance differs slightly between the two predictions. Beyond 
these five features, the contributions of other features are relatively 
minor, indicating that the modulus and phase angles of asphalt binders 
are strongly correlated and influenced by similar chemical properties. 
Additionally, temperature emerges as a critical factor in determining the 
rheological properties for both modulus and phase angles. Frequency 
and sulfoxide stretching have nearly identical mean impacts on the 
model outputs, as illustrated in Fig. 11(a) and 11(c). This analysis 
highlights the key role of these features in predicting the rheological 
properties of asphalt binders.

More specifically, from Fig. 11(b) and 11(d), for the modulus, it is 
clear that temperature exhibits a negative influence, indicating that 
higher temperatures lead to lower modulus values for asphalt binders. 
Additionally, frequency, sulfoxide stretching, and C=C stretching show 

a positive correlation with the modulus, while CH3 bending shows a 
negative impact. This suggests that increasing frequency and sulfoxide 
stretching can enhance the modulus of the asphalt binders. For phase 
angles, the SHAP values of temperature are widely distributed, reflect-
ing its varying influence across different testing samples. Unlike its role 
in predicting the modulus, higher temperatures and higher values of CH3 
bending are positively correlated with increased phase angles. 
Conversely, higher values of frequency, sulfoxide stretching, and C=C 
stretching result in lower phase angles. This distinction highlights the 
differing roles of these features in influencing the modulus and phase 
angles of asphalt binders.

The above analysis highlights the influence of all input features on 
the output of the FT-XGBoost model, emphasizing the critical role of 
temperature in determining the rheological properties of asphalt 
binders. For predicting the modulus, as shown in Fig. 9(d) and 9(e), the 
zoomed-in sections reveal that the FT-RF model demonstrates superior 
capability in predicting low modulus values of asphalt binders. While 
FT-XGBoost outperforms in predicting high modulus values, its 

Fig. 9. Prediction results of |G*| using (a) MLR, (b) FT-SVR, (c) FT-ANN, (d) FT-RF, and (e) FT-XGBoost.
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relatively poorer predictions for low modulus contribute to a higher 
MAPE indicator. From the SHAP value analysis, it is clear that temper-
ature has the most significant influence on predictions. Therefore, to 

leverage the strengths of both the FT-RF and FT-XGBoost models, the 
original dataset was split into two subsets based on a threshold of 22 ◦C: 
Dataset 1 (temperature range of [-30, 22)) and Dataset 2 (temperature 
range of [22, 76]). The FT-XGBoost model was applied to Dataset 1, 
while FT-RF was used for Dataset 2. After computation, the combination 
of FT-RF and FT-XGBoost models achieves the following indicators on 
the original dataset: R2 = 0.9999, MSE = 6.94e12, RMSE = 2.64e6, MAE 
= 1.21e6, and MAPE = 14.19 %. These indicators outperform those of 
the individual FT-RF or FT-XGBoost models, as indicated in Fig. 9 and 
Table 4, demonstrating the effectiveness of this model combination 
strategy in improving modulus prediction accuracy and robustness 
across different temperature ranges.

Fig. 10. Prediction results of δ using (a) MLR, (b) FT-SVR, (c) FT-ANN, (d) FT-RF, and (e) FT-XGBoost.

Table 4 
Different indicators on model performance.

Models Indicators for predicting |G*| Indicators for predicting δ
MSE MAE MAPE (%) MSE MAE MAPE (%)

MLR 2.16e16 1.18e8 2.07e7 41.49 4.98 19.72
FT-SVR 1.02e15 1.73e7 1.87e5 0.87 0.61 2.41
FT-ANN 1.04e14 5.04e6 1.46e4 0.49 0.51 1.77
FT-RF 5.74e13 2.97e6 14.22 0.41 0.39 1.19
FT-XGboost 7.57e12 1.32e6 1.25e4 0.11 0.22 0.66
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5. Conclusions

This study investigated the relationship between the rheological 
properties and chemical composition of asphalt binders based on labo-
ratory tests and five machine learning algorithms, with Bayesian opti-
mization used to determine optimal hyperparameters and maximize 
model performance. Results show a strong correlation between chemical 
composition and rheological properties, and FT-XGBoost can well pre-
dict the modulus (|G*|) and phase angle (δ) of binders. The specific 
findings of the study are as follows:

The chemical compositions of asphalt binders are not sensitive to 
variations in oil source and production batch, with the maximum weight 
of their coefficient of variation being around 20 %. This makes it chal-
lenging to establish a direct relationship between chemical composition 
and rheological properties. However, the chemical compositions of 
asphalt binders are sensitive to penetration, aging level, and bio- 
extender, as reflected in the vibrations of functional groups such as 
S=O, C=O, and C-O-C. The strong correlation between changes in these 
functional groups and the |G*| and δ underscores the potential for pre-
dictive modeling.

The trained FT-XGBoost model outperforms MLR, FT-SVR, FT-ANN, 
and FT-RF in predicting the |G*| and δ of asphalt binders. Using chem-
ical compositions along with frequency and temperature, it achieves R2 

values of 0.9998 and 0.9999 for |G*| and δ, respectively. SHAP values 
indicate that temperature, frequency, and functional groups A1030 
(sulfoxide stretching), A1378 (CH3 bending), and A1600 (C=C stretch-
ing) are the five most important factors for predicting both |G*| and δ, 
further confirming the strong correlations between these variables. 
Temperature is identified as a critical influencing factor. To further 
improve predictive performance, it is recommended to use FT-XGBoost 
for low temperatures ([− 30 ◦C, 22 ◦C)) and FT-RF for high temperatures 
([22 ◦C, 76 ◦C]).

CRediT authorship contribution statement

Fan Zhang: Writing – review & editing, Writing – original draft, 
Validation, Methodology, Investigation, Funding acquisition, Formal 
analysis, Data curation. Augusto Cannone Falchetto: Writing – review 
& editing, Supervision, Funding acquisition. Di Wang: Writing – review 
& editing, Methodology, Investigation, Data curation. Zhenkun Li: 
Writing – review & editing, Writing – original draft, Validation, Meth-
odology, Formal analysis. Yuxuan Sun: Methodology, Investigation, 
Data curation. Weiwei Lin: Writing – review & editing, Supervision.

Fig. 11. SHAP values of FT-XGBoost model prediction: (a) mean of absolute SHAP values for predicting |G*|, (b) SHAP values for predicting |G*|, (c) mean of 
absolute SHAP values for predicting δ, (d) SHAP values for predicting δ.

F. Zhang et al.                                                                                                                                                                                                                                   Fuel 396 (2025) 135319 

12 



Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgment

This work was funded by the MoreBit project from the Finnish 

Transport Infrastructure Agency and Industries. Fan Zhang acknowl-
edges the support from the National & Local Joint Engineering Research 
Center of Transportation and Civil Engineering Materials, Chongqing 
Jiaotong University (grant number: TCEM-2023-02) and the Finnish 
Section of the Nordic Road Association (PTL ry). Weiwei Lin and 
Zhenkun Li acknowledge the support from Aalto University (research 
project funding in ENG 2022). Yuxuan Sun acknowledges the China 
Scholarship Council for the financial support for pursuing a PhD degree 
(Grant number: 2024407960006).

Appendix 1. Description of asphalt binder samples

Number Source Batch Grade Aging level Bio type Sample name

1 A − 35/50 Neat − A-N-35
2 A − 50/70 Neat − A-N-50
3 A − 70/100 Neat − A-N-70
4 A − 100/120 Neat − A-N-100
5 A 1 160/220 Neat − A-N-160-1
6 A 2 160/220 Neat − A-N-160-2
7 A 3 160/220 Neat − A-N-160-3
8 B − 70/100 Neat − B-N-70
9 B − 100/120 Neat − B-N-100
10 B 1 160/220 Neat − B-N-160-1
11 B 2 160/220 Neat − B-N-160-2
12 C 1 70/100 Neat − C-N-70-1
13 C 2 70/100 Neat − C-N-70-2
14 C − 100/120 Neat − C-N-100
15 C − 120/150 Neat − C-N-120
16 C 1 160/220 Neat − C-N-160-1
17 C 2 160/220 Neat − C-N-160-2
18 D − 70/100 Neat − D-N-70
19 E − 50/70 Neat − E-N-50
20 E − 70/100 Neat − E-N-70
21 E − 100/160 Neat − E-N-160
22 E − 70/100 Neat A E-N-70-BioA
23 E − 100/160 Neat A E-N-160-BioA
24 E − 70/100 Neat B E-N-70-BioB
25 E − 100/160 Neat B E-N-160-BioB
26 E − 50/70 Short-term aged − E-R-50
27 E − 70/100 Short-term aged − E-R-70
28 E − 100/160 Short-term aged − E-R-160
29 E − 70/100 Short-term aged A E-R-70-BioA
30 E − 100/160 Short-term aged A E-R-160-BioA
31 E − 70/100 Short-term aged B E-R-70-BioB
32 E − 100/160 Short-term aged B E-R-160-BioB
33 E − 50/70 Long-term aged − E-1P-50
34 E − 70/100 Long-term aged − E-1P-70
35 E − 100/160 Long-term aged − E-1P-160
36 E − 70/100 Long-term aged A E-1P-70-BioA
37 E − 100/160 Long-term aged A E-1P-160-BioA
38 E − 70/100 Long-term aged B E-1P-70-BioB
39 E − 100/160 Long-term aged B E-1P-160-BioB
40 E − 50/70 Long-term aged − E-2P-50
41 E − 70/100 Extended long-term aged (2PAV) − E-2P-70
42 E − 100/160 Extended long-term aged (2PAV) − E-2P-160
43 E − 70/100 Extended long-term aged (2PAV) A E-2P-70-BioA
44 E − 100/160 Extended long-term aged (2PAV) A E-2P-160-BioA
45 E − 70/100 Extended long-term aged (2PAV) B E-2P-70-BioB
46 E − 100/160 Extended long-term aged (2PAV) B E-2P-160-BioB
47 E − 50/70 Extended long-term aged (3PAV) − E-3P-50
48 E − 70/100 Extended long-term aged (3PAV) − E-3P-70
49 E − 100/160 Extended long-term aged (3PAV) − E-3P-160
50 E − 70/100 Extended long-term aged (3PAV) A E-3P-70-BioA
51 E − 100/160 Extended long-term aged (3PAV) A E-3P-160-BioA
52 E − 70/100 Extended long-term aged (3PAV) B E-3P-70-BioB
53 E − 100/160 Extended long-term aged (3PAV) B E-3P-160-BioB
54 E − 50/70 Extended long-term aged (4PAV) − E-4P-50
55 E − 70/100 Extended long-term aged (4PAV) − E-4P-70
56 E − 100/160 Extended long-term aged (4PAV) − E-4P-160
57 E − 70/100 Extended long-term aged (4PAV) A E-4P-70-BioA
58 E − 100/160 Extended long-term aged (4PAV) A E-4P-160-BioA
59 E − 70/100 Extended long-term aged (4PAV) B E-4P-70-BioB
60 E − 100/160 Extended long-term aged (4PAV) B E-4P-160-BioB

(continued on next page)
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(continued )

Number Source Batch Grade Aging level Bio type Sample name

61 E − 50/70 Extended long-term aged (5PAV) − E-5P-50
62 E − 70/100 Extended long-term aged (5PAV) − E-5P-70
63 E − 100/160 Extended long-term aged (5PAV) − E-5P-160
64 E − 70/100 Extended long-term aged (5PAV) A E-5P-70-BioA
65 E − 100/160 Extended long-term aged (5PAV) A E-5P-160-BioA
66 E − 70/100 Extended long-term aged (5PAV) B E-5P-70-BioB
67 E − 100/160 Extended long-term aged (5PAV) B E-5P-160-BioB

Appendix 2. Calculation of weight value

Vi = σi
Xi

(A.2.1)
Wi = Vi∑n

i=1
Vi

(A.2.2)

where, Vi is the coefficient of variation; σi is the standard deviation; Xi is the average value; Wi is the weight value.

Appendix 3. Calculation of R2, MSE, RMSE, MAE, and MAPE

R2 = 1 −

∑N
i=1(yi − ŷ i)

2

∑N
i=1(yi − y)

2 (A.3.1)

MSE = 1
N
∑N

i=1
(
yi − ŷi

)2(A.3.2)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(
yi − ŷi

)2
√

(A.3.3)

MAE = 1
N
∑N

i=1
⃒
⃒yi − ŷi

⃒
⃒(A.3.4)

MAPE =

(

1
N
∑N

i=1

⃒
⃒
⃒
⃒
yi − ŷ i

yi

⃒
⃒
⃒
⃒

)

⋅100%(A.3.5)

where yi represents the ground-truth values, ŷi represents the predicted values, and y represents the average of the true values, calculated as 
1
N
∑N

i=1yi.

Data availability

Data will be made available on request.
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