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Abstract: Constructional material deterioration and member damage can cause changes in the
dynamic characteristics of bridge structures, and such changes can be tracked in the responses
of passing vehicles via the vehicle-bridge interaction (VBI). Though data-driven methods have
shown promising results in damage inspection for drive-by methods, there is still much room for
improvement in their performance. Given this background, this paper proposes a novel time-domain
signal processing algorithm for the raw vehicle acceleration data of data-driven drive-by inspection
methods. To achieve the best data processing performance, an optimizing strategy is designed
to automatically search for the optimal parameters, tuning the algorithm. The proposed method
intentionally overcomes the difficulties in the application of drive-by methods, such as measurement
noise, speed variance, and enormous data volumes. Meanwhile, the use of this method can greatly
improve the accuracy and efficiency of Machine Learning (ML) models in vehicle-based damage
detection. It consists of a filtering process to denoise the data, a pooling process to reduce data
redundancy, and an optimizing procedure to maximize algorithm performance. A dataset is obtained
to validate the proposed algorithm through laboratory experiments with a scale truck model and a
steel beam. The results show that, compared to using raw data, the present algorithm can increase
the average accuracy by 12.2–15.0%, and the average efficiency by 35.7–96.7% for different damaged
cases and ML models. Additionally, the functions of filtering and pooling operations, the influence
of window function parameters, as well as the performance of different sensor locations, are also
investigated in the paper. The goal is to present a signal processing algorithm for data-driven drive-by
inspection methods to improve their detection performance of bridge damage caused by material
deterioration or structural change.

Keywords: signal processing; structural health monitoring; drive-by bridge inspection; vehicle-bridge
interaction; machine learning; sliding window

1. Introduction

In the U.S., 42% of all bridges are at least 50 years old, and structural deficiencies (e.g.,
material deterioration) have been recorded in 46,154, or 7.5% of the nation’s bridges [1]. In
Europe, it has been reported that most bridges were constructed between 1945 and 1965,
and some of them have recently experienced aging and deterioration problems [2]. As a
tragic example, the Genoa bridge collapse in Italy claimed the lives of 43 people in 2018,
mainly due to poor maintenance with difficulties in inspection [3,4]. Bridge structural
failure has emerged as a worldwide issue, and it is essential to build effective bridge health
monitoring systems that can detect damage in its early phases [5].

Damage is generally considered to be a change in effective material properties due to
cracks, spalling, corrosion, delamination, voids, etc. Traditional inspection methods often
require on-site inspections, such as visual monitoring by experienced experts [6]. However,
in addition to the substantial labor costs and operational interruptions, these methods have
drawbacks that they may fail to identify internal damage of the construction materials.
On the other hand, the internal damage will induce changes in the vibrational properties,
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and vibration-based detection techniques can thus address these shortcomings [7]. Nev-
ertheless, due to the high costs of installing and maintaining sensors, direct methods of
vibration-based structural health monitoring (SHM) have long been regarded as expensive
technologies [8]. Furthermore, because the equipment is permanently attached to the bridge
as a customized SHM system, it could be challenging to transfer one monitoring framework
to other bridges [9]. Given these, it is necessary to develop an alternative technique without
instrumenting the bridge.

Due to its advantages in mobility, economics, and efficiency, the drive-by bridge in-
spection method, an indirect SHM approach, has recently attracted a lot of interest [10].
It was initially proposed by Yang et al. [11], who analytically retrieved the fundamental
frequency of the bridge from the vibrational responses of a passing vehicle. It simply
requires a few sensors mounted on the vehicle rather than instrumentation on the bridge,
providing great practicability [12]. Through numerical simulations, laboratory experiments,
and field tests, studies have validated the drive-by method’s potential for obtaining bridge
modal parameters over the past two decades, such as fundamental frequencies and mode
shapes [13–20]. Changes in modal parameters can be an indication of damage (e.g., ma-
terial deterioration or structural change), which is known as the modal parameter-based
method [21].

However, the drive-by methods based on modal parameters generally struggle to
achieve satisfactory performance in damage detection due to several reasons. First, the
natural frequencies used as damage indicators in several studies are easily influenced
by external factors such as temperatures, which may conceal the change induced by
damage [22]. Second, the other frequently used indicators, such as mode shapes or their
derivations, are often vulnerable to measurement errors/noise, masking changes from
small-scale damage [23]. Third, there is a potential risk of human bias because such
approaches heavily rely on the researchers’ expertise and experience [24]. Furthermore,
the drive-by methods based on modal parameters might have difficulties quantifying
the severity of damage [25]. Although there are methods based on moving force and
displacement profiles, etc. [26–29], similar problems have been noticed, and they usually
lack experimental validation.

As an active area of research, data-driven approaches have recently gained popularity.
They have demonstrated great achievements in indirect SHM frameworks. For example,
Cerda et al. [30] successfully identified various bridge damage cases using Support Vector
Machines (SVM) by inputting vehicle frequency domain data. Liu et al. [31] achieved
damage quantification of bridges by utilizing stacked autoencoders as dimensionality
reduction techniques to explore the vehicle’s full bandwidth frequency response. Sarwar
and Cantero [32] effectively detected bridge damage by using a fleet of vehicles’ responses
and adopting deep autoencoders as feature extraction techniques. These methods, however,
rely on ML techniques used as signal processing tools for feature extraction. Since the
extracted features from ML techniques are not often transferable to other bridges [33],
one concern is that such approaches might bind the monitoring framework to a specific
structure or system. Furthermore, most of the current methods are based on the frequency
domain. The transformation of signals from the time domain to the frequency domain can
result in information losses [34]. The information losses are primarily the non-stationary
features of signals that vary with time, whereas vibrational signals in engineering practice
are usually non-stationary. Time-domain signals can effectively display the temporal
characteristics of vibration as they change over time. They may also be related to the
damage, particularly in the case of minor or local damage.

Some researchers have suggested that the time-domain signal contains richer damage
information and is thus more sensitive to structural damage [23,24]. As an example of
machine learning-based indirect SHM using time-domain data, Lan et al. [35] accurately
detected a 1% structural mass increase in bridges via an optimized AdaBoost-linear SVM,
where only raw acceleration data from a vehicle were utilized as direct input in their study.
The authors believe that preserving time-domain features when processing acceleration
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data can be beneficial to damage detection. However, most of the data processing methods
currently applied to the drive-by method do not pay sufficient attention to the temporal
information. In general, there are several challenges in the processing of time-domain
signals from drive-by measurements. First, a drive-by measurement inevitably contains
noise (e.g., environmental noise) in the time domain, which could affect the results. Second,
it is often difficult to ensure a constant vehicle speed, resulting in irregular data sizes,
while the same data size is important for many ML methods. Third, the time-domain
signals usually have massive amounts of data, requiring large computational resources.
Addressing these issues is key to processing the time-domain responses from a drive-by
measurement.

This paper proposes a novel time-domain signal processing algorithm for the raw
vehicle acceleration data of data-driven drive-by inspection methods. It aims to provide
an efficient, transferable, and easy-to-use signal processing method for the indirect SHM
framework, which can significantly improve the accuracy and efficiency of ML models in
damage detection. The data processing method consists of procedures for filtering and
pooling; they are sliding window-based methods, in which the former aims to denoise data,
while the latter seeks to equalize the data size and reduce data redundancy. In addition, an
optimizing strategy is designed to automatically search for the optimal parameters to tune
the algorithm, maximizing the performance in data processing. A dataset is obtained to
validate the proposed algorithm through laboratory experiments with a scale truck model
and a steel beam. The performance of the methodology is illustrated by its accuracy and
efficiency improvement in damage detection with ML models such as SVM. The functions
of filtering and pooling processes, the influence of window function parameters, as well
as the performance of different sensor locations are also investigated in the study. The
final goal is to present a signal processing algorithm for data-driven drive-by inspection
methods to improve their detection performance of bridge damage caused by material
deterioration or structural change.

2. Materials and Methods
2.1. Data-Driven SHM Framework

A data-driven drive-by SHM framework can be considered as a four-step process,
as presented in Figure 1. In step 1, the raw acceleration signals collected from a passing
vehicle are divided into vectors corresponding to the number of times the vehicle runs
on the bridge. In step 2, the time-domain signals, during which the whole car is on the
bridge, are processed to remove noise, redundant information, etc. In step 3, the processed
vectors are then used as inputs for ML models for damage diagnosis; they are usually split
into training and test sets, and labels are required in supervised/semi-supervised learning
models. In step 4, the performance of ML models is evaluated based on their accuracy,
efficiency, etc. The proposed data processing methods are implemented in step 2, which
aim to improve the accuracy and efficiency of the data-driven drive-by SHM framework
in general.

2.2. Filtering Procedure

The signal processing methods involve a filtering procedure and a pooling procedure.
As a sliding window technique [36], the data acquisition with filtering operation can be
referred to in Figure 2. In the process, each signal in the input data is scanned with a
template (or kernel, mask); the signal value is replaced with the neighborhood’s weighted
average signal value, which is determined by the window function (see Equation (1)). In
the equation, i represents the i-th signal in the time-domain input, I(i); m denotes the
length of the window function, W(n); the window function is suggested to be selected
according to the dominant noise. The Gaussian function is chosen as the window function
(see Equation (2)) in this study, as white noise is the main source of noise in a normal
laboratory environment. In the equation, the expectation, µ, is zero and the deviation, σ, is
determined by the optimizing procedure. Based on some instances in the literature [37,38],
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the environmental noise can be theoretically added to the acceleration signal in the form of
Equation (3). In the equation,

..
yp is the polluted acceleration data; Ep represents the noise

level; Ns denotes the standard normal distribution, and σ..
yv

is the standard deviation of

the vehicle response
..
yv. In this case, the Gaussian kernel filtering operation could perform

well. The influence of different deviation values will be discussed below. It should be
noted that the operation will begin with m/2 zeros padding the left end of the input data
to align it with the window function. The filtering procedure aims to obtain denoised data
by denoising the raw time-domain signals; it does not change the data size.

f (i) =
m

∑
n=1

I(i + n)W(n) (1)

W(x) =
1√
2πσ

exp

(
−
(

x− µ)2

2σ2

)
(2)

..
yp =

..
yv + EpNsσ..

yv
(3)
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2.3. Pooling Procedure

The pooling operation further processes the denoised data from the filtering procedure,
as shown in Figure 3. The concept of the pooling procedure can refer to the pooling layer in
the neural network [39], where the pooling operation retrieves the representative features,
such as the maximum value and mean value, within a certain neighborhood along the
time-series direction. The data’s characteristics remain mostly unchanged throughout
the pooling process, despite a reduction in data size [40]. Figure 4a illustrates how the
operation pools the data of the vehicle traveling at speed v. The passing time is T, the
sampling frequency is f , and the data size is f × T; Figure 4b shows the pooling process
on the car with speed s× v, in which the speed ratio of the run to the first is s, and its
data size is computed as ( f × T)/s. Through the pooling process, data of the same size
can be acquired by modifying the window length, l, according to speed variations; the

data size after pooling,
−
N, becomes ( f × T)/l.

−
N is automatically chosen by the optimizing

procedure in this study, where l is assigned based on the vehicular speed in each run
(stride = window length). Zeroes will be automatically appended to the end of any data

that cannot be split by
−
N; the edge data has little effect on the results. Max pooling is

adopted in this study since it has been proven to be more informative in practice [39]. When
processing acceleration signals, the max pooling can preserve temporal information, such

as local amplitude peaks, to a great extent. The effects of
−
N or l will be also discussed

below. It should be noted that the speed difference in such a method should not be too
large; some earlier research [41–43] found an empirically acceptable velocity difference of
roughly 40%. The pooling process can further mitigate noise, equalize data size, and reduce
computational costs.

2.4. Dataset Format and ML Models

In the data-driven SHM framework, ML models learn to identify damage by feeding
samples from the training set, and their performance can be evaluated by their accuracy in
the test set. The accuracy, AC, can be calculated using Equation (4). In the equation, TP,
TN, FP, and FN represent true positive, true negative, false positive, and false negative
predictions in test samples, respectively. As presented in Figure 5, the dataset from different
cases is split into training and test sets at a ratio of 85% to 15% in this study, and the
performance of each ML method is assessed using five-fold cross-validation. In the figure,



Materials 2023, 16, 2624 6 of 20

N denotes the total vehicle runs for each case, and the superscript numbers (e.g., 1, 2, 3)
correspond to different damage cases.

AC =
TP + TN

TP + TN + FP + FN
(4)
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In this study, five different ML models are chosen, which are linear-SVM, RBF-SVM,
Gaussian Process (GP), Artificial Neural Network (ANN), and Random Forest (RF). They
are ML models often employed in SHM problems. The performance of the proposed signal
processing algorithm is assessed by its improvement in accuracy and efficiency of damage
detection with different ML methods. The descriptions of the ML models used in this paper
are as follows:
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Linear-SVM: One of the most robust and accurate models of well-known ML algo-
rithms is SVM [44]. The goal of linear-SVM is to find separating hyperplanes that can
separate the dataset as reliably as possible into the distinct data classes. Ideally, when the
data are completely linearly separable, the hyperplanes will be as far as possible from the
nearest elements of the classes.
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RBF-SVM: RBF-SVM, as one of the nonlinear SVMs, replaces hyperplanes with Gaus-
sian manifolds, but the basic principle remains the same [44]. One can adapt SVM to be a
nonlinear classifier, which allows SVM to separate nonlinearly separable support vectors.
The codes and implementation of SVMs can refer to LIBSVM: A library for support vector
machines [45].

GP: GP is an infinite-dimensional generalization of multivariate normal distributions
and can be used for classification and regression. It is a type of kernel model, similar
to SVM, but unlike SVM, it can predict highly calibrated class membership probabilities,
although the choice and configuration of the kernel used at the heart of the method can be
challenging. Its codes and implementation can refer to Gaussian Processes for Machine
Learning [46].

ANN: ANN is based on a collection of connected units or nodes called artificial
neurons, which loosely resemble the neurons in a biological brain. Each connection, like
the synapses in a biological brain, can transmit a signal to other neurons. Typically, neurons
are aggregated into layers. Different layers may perform different transformations on their
inputs. Signals travel from the first layer (the input layer) to the last layer (the output layer),
possibly after traversing the layers multiple times. Its codes and implementation can refer
to Deep Learning [40].

RF: RF is an extension of the bagging method, which uses feature randomness in addi-
tion to bagging to produce an uncorrelated forest of decision trees [47]. For classification
problems, the output of RF is the class selected by most trees. RF generally outperforms
decision trees, but its performance can be affected by data characteristics. Its codes and
implementation can refer to Random Forests [48].

2.5. Optimizing Procedure

As can be seen from the above process, the performance of the filtering and pooling

operations is affected by their parameters, σ and
−
N (or l). There may also be optimum σ and

−
N values that can lead to the best performance in data processing. Given the ML model,
training and testing samples, the optimizing procedure can search for these optimum
parameters. Figure 6 shows the complete optimizing process, which can be regarded as a



Materials 2023, 16, 2624 8 of 20

loop program. The initial parameters of σ and
−
N, and the number of cycles in updating

them are set to 0.2, 4000, and 200, respectively, in this study. In each loop, the ML model
is trained using the processed training samples as input, after which the accuracy on test
samples is computed. The one with the highest accuracy is chosen as the winner, and then
the optimum parameters for data processing can be accordingly determined. The loop is
stopped when the number of iterations is reached. This way, the optimizing procedure can
achieve automatic parameter tuning of the data processing. The optimal tuning algorithm,
as an auxiliary tool, can be understood to a certain extent as a “grid search” strategy [49]
customized for the proposed filtering and pooling operations. The selection of parameters
in this study can be seen in the “Results and Analysis” section, which provides the greatest
score among all the candidate parameters, but, for other structures, they may be different.
Based on these results, 200 iterations are sufficient for this experimental database or a
small database, while it is usually necessary to choose a greater number of iterations
for larger databases. It is worth noting that this optimizing program requires labelled
samples. For data with unlabeled samples, the above signal processing methods (i.e., the
filtering and pooling operations) are still applicable, but this optimization method cannot
be directly used.
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3. Experimental Program

Laboratory experiments were performed to validate the proposed algorithm using a
HEA400 steel beam and a scale truck model with an engine. Acceleration data obtained
from the vehicle sensor were utilized to construct the dataset. In this study, damage cases
were simulated by adding weights to the bridge model, known as “artificial damage”, to
avoid permanent or irreversible destruction to the material, which has been proven feasible
by many studies [31,35,43,50]. The data acquisition system in this study was driven by a
PC, connected to the sensor by wires, and had a sampling rate of 2 kHz; the sensor was
manufactured by Bruel and Kjaer (TYPE 4371) [51].

3.1. Vehicle Model

A Tamiya Mercedes-Benz 1850L is employed as the vehicle model in the study, as
shown in Figure 7a. Tamiya is a Japanese manufacturer of car models, known for its precise
scale details and excellent quality. This is a 1:14 scale model of a full-sized truck, and its
weight is experimentally measured as 4.05 kg. In addition, the vehicle body is loaded with
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a 5 kg weight, so the weight of the whole vehicle is 9.05 kg. A wire system is used to guide
the vehicle to travel through the beam in a straight line and along the same path. The car
model uses a battery-driven motor and is operated with a remote controller (see Figure 7b)
to move at a relatively constant speed. Two accelerometers are mounted on the rear axle
(sensor#1) and the front axle (sensor#2), respectively, as indicated in Figure 7c. In the
ML-based drive-by inspection methods, the vehicle configuration should be consistent in
multiple measurements, and its speed difference should not be too large (generally less
than 40%) for different tests [35,41,42]. A relatively low speed is recommended according
to some previous studies [18]. As may be seen in Figure 8, the experiment’s statistical
distribution of velocities nearly conforms to the normal distribution. The mean speed is
0.93 m/s, and the velocity distribution ranges from 0.84 m/s to 1.02 m/s. The maximum
to minimum velocity ratio is 121.4%, which is less than the acceptable speed difference
of 40%.
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3.2. Bridge Model

A HEA400 steel beam is utilized as the simply supported bridge model in the ex-
periment, as shown in Figure 9. The details of the bridge model, including the sectional
dimensions, are shown in Figure 10. In addition to the wire system, the experimental
setup also includes acceleration and deceleration ramps, ensuring that a stable speed
can be approached before reaching the beam. The physical properties of the beam are
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provided as follows: elastic modulus E = 199 GPa; density ρ = 7.85 × 103 kg/m3; total
length L = 4.4 m (span length Ls= 4 m); section area A = 15898 mm2; and moment of inertia
I = 8.564 × 107 mm4. Figure 11 shows the additional masses used as artificial damage. The
mass placed in different positions on the beam represents different damage locations; the
case details will be discussed later.
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3.3. Damage Cases

In the ML-based drive-by inspection framework, the vehicle is usually required to be
repeatedly driven across the bridge to obtain the dataset. Table 1 shows all state scenarios
employed in the experiment, where the healthy case is “case 0”. The damaged cases are
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collected from three damage locations; 2 m (0.5 Ls) and 2.8 m (0.7 Ls) stand for the damage at
and near the bridge’s midspan, while 0.4 m (0.1 Ls) represents the damage near the bridge’s
support. Common damage like cracks and corrosion (i.e., stiffness and mass reduction) in
the material can cause changes in the dynamic properties of the structure, while manually
induced damage that increases structural stiffness and mass can also change dynamic
characteristics. Mass increases will lead to changes in modal parameters of the bridge (e.g.,
frequencies), but, more than that, they will change the amplitudes in both time-domain and
frequency-domain responses [31]. Thus, one advantage of the ML-based drive-by methods
is their ability to detect small-scale damage by tracking the entire frequency or time domain
signals. In this study, data from front and rear axle accelerometers are used to build the
database. There is a total of 200 (runs) × 4 (cases) × 2 (sensors) = 1600 (signals) in the
experimental dataset.

Table 1. Case description.

Case No. Location Weight Runs Case No. Location Weight Runs

0 0 0 (Healthy) 200 2 2 m 20 kg (4%) 200
1 0.4 m 20 kg (4%) 200 3 2.8 m 20 kg (4%) 200

If scaling the proposed approach to real-world cases, for damage detection, the authors
would recommend collecting as much “healthy” data as possible, which should include
many influencing factors, such as traffic, wind/temperature changes, etc. Damage label
data could be hard to obtain in practice. One method is to assume the newly obtained data
are damaged, and then use an ML model to classify them and the healthy data [52]. If the
accuracy is lower than a threshold (e.g., 60%), they will be marked as healthy; otherwise,
they will be marked as damaged. For data processing, a window function that can well
handle these noises should be found in the filtering procedure, while the max pooling may
still be applicable. These still need further investigation.

4. Results and Analysis

This section consists of four subsections. Section 4.1 demonstrates the performance of
the algorithm, which is assessed by its improvement in accuracy and efficiency of damage
detection with different ML methods. Section 4.2 illustrates the function of the filtering
process and discusses the effects of window function parameters. Section 4.3 explains the

role of the pooling process and explores the influence of
−
N or l. Section 4.4 discusses the

results for different sensor locations on the vehicle. At the same time, Sections 4.2 and 4.3
show how the optimal parameters are chosen by the optimizing operation.

4.1. Performance Evaluation of the Proposed Algorithm

Principal Component Analysis (PCA) can be used as a visualization tool to present
the distribution and variation of data points. PCA converts a given dataset into a new
coordinate system by employing an orthogonal linear transformation [53]. The first prin-
cipal component (feature 1) has the largest variance, followed by the second principal
component (feature 2), and so on. The first two features are used to visualize the division of
the training set and the test set in each case. It can be found from the visualization results
in Figure 12 that there are no two completely overlapping points in each case on the first
two features of the training set and the test set. This shows that there is a variation between
different drive-by measurements.
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The performance of the proposed algorithm is demonstrated by its improvement in
accuracy and efficiency of damage detection with different ML models, including Linear-
SVM, RBF-SVM, GP, ANN, and RF. Grid Search is used in this study to find the optimal
parameters for ML models. The combination that produces the greatest cross-validation
score is kept after Grid Search has evaluated all other potential combinations of parameter
values in the lists [49]. For different ML models, their main optimal parameters are shown
in Table 2. For parameter combinations that have the same scores, the optimum parameters
are manually selected from one of them. ANNs may contain complex architectures (e.g.,
the number of layers and hyperparameters), for which seeking the best or unique solution
for a given dataset would be somewhat beyond the scope of this paper. So, only ANNs
with simple architectures will be explored.

Table 2. Major parameters of ML models.

Algorithm Configuration Algorithm Configuration

Linear-SVM C = 2 ANN hidden_layer_sizes = (12, 5),
alpha = 1, max_iter = 800

RBF-SVM Gamma = 0.01, C = 2 RF n_estimators = 900, max_features = 25
GP Kernel = 100 × RBF (100)

Table 3 gives the comparison results of ML models with original and processed data as
input. For raw data, their data length may be different due to the speed variance. To ensure
the fairness of the comparison results, the common time period of each run in the raw
time-domain data is used as the input of the ML model, which has about 8000 acceleration
points corresponding to 4 s of driving time in this study. Many ML models require their
data inputs to be of the same length. For example, the SVM model aims to categorize data
points constituted of acceleration amplitudes in a high-dimensional space. If the lengths of
the data are different, the spatial dimensions represented by the data points are different,
and SVM cannot work at this time. The data processing operations are performed on them.
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It is deemed that the minimum time period required for the drive-by measurement can
be met as long as the chosen time period is longer than one full vibration cycle of the
bridge [43]. This can be calculated by Tb1 = 1/ fb1, or 0.03 s in this study, where Tb1 is the
natural vibration period of the bridge and fb1 is the bridge’s first natural frequency. The
results with processed data are displayed in bold, and the total time for model training
and testing is indicated in parenthesis. All computations in this study were executed in
Python 3.8 64-bits on Windows using scikit-learn and SciPy packages [54,55], on a laptop
PC with AMD Ryzen 7 CPUs and 8 GB RAM. It should be noted that the results of this
subsection and Sections 4.2 and 4.3 are based on the rear axle sensor, while the results of the
front axle sensor will be discussed in Section 4.4. The accuracy improvement in this study
refers to the difference in accuracy of the ML model results before and after processing
the data. It is clear from the comparison results that both accuracy and efficiency are
significantly improved when the processed data are used as input. The proposed method
can effectively increase the average accuracy, ranging from 12.2% to 15.0%, in different ML
models. Meanwhile, among these ML models, their average runtime decreases by 0.59 to
25.4 s. Their efficiency improvement can be defined as the runtime saved by the processing
algorithm (see Equation (5). In the equation, ε represents the efficiency improvement; tO and
t represent the total runtime of model training and testing with original and processed data
as input, respectively. The proposed method thereby improves the efficiency of ML models
by 96.7% (Linear-SVM), 96.7% (RBF-SVM), 59.5% (GP), 91.4% (ANN), and 35.7% (RF),
respectively. The runtime of the time-domain signal processing algorithm is 0.19–0.31 s in
different cases. By including the signal processing cost in the total computational cost, the
overall efficiency can be improved by 64.5% (Linear-SVM), 64.5% (RBF-SVM), 56.3% (GP),
90.7% (ANN), and 30.5% (RF), respectively. Choosing an appropriate and effective data
processing method is therefore of great benefit to the data-driven indirect SHM framework.
At the same time, it can be found that linear SVM can provide almost the highest accuracy
and efficiency among the ML models used. The below results are based on the linear
SVM model.

ε =
tO − t

tO
(5)

Table 3. Comparison results of accuracy and efficiency.

Case No. Type Linear-SVM RBF-SVM GP ANN RF

Case1 Original 78.3% (0.62 s) 71.7% (0.61 s) 75.0% (6.48 s) 78.3% (28.11 s) 76.7% (4.26 s)
Processed 90.0% (0.02 s) 83.3% (0.02 s) 88.3% (2.66 s) 91.7% (2.44 s) 90.0% (2.72 s)

Case2 Original 80.0% (0.61 s) 75.0% (0.59 s) 76.7% (6.25 s) 78.3% (27.42 s) 78.3% (4.21 s)
Processed 93.3% (0.02 s) 86.7% (0.02 s) 88.3% (2.75 s) 93.3% (2.45 s) 91.7% (2.79 s)

Case3 Original 80.0% (0.59 s) 75.0% (0.59 s) 76.7% (6.63 s) 80.0% (27.89 s) 76.7% (4.15 s)
Processed 95.0% (0.02 s) 88.3% (0.02 s) 91.7% (2.42 s) 96.7% (2.30 s) 95.0% (2.61 s)

Avg. imp. 13.3% (0.59 s) 12.2% (0.58 s) 13.3% (3.84 s) 15.0% (25.4 s) 15.0% (1.5 s)

4.2. Discussion on the Filtering Procedure

Section 4.1 validates that the proposed method can effectively improve the accuracy
and efficiency of the data-driven indirect SHM framework. In conjunction with the fre-
quency spectrum, this section discusses the function of filtering procedure and the influence
of window function parameters.

A representative signal with a length of four seconds in the healthy state (case 0) is
selected to illustrate the function of the filtering procedure, and similar results can be seen
in other cases. Figure 13 shows the time and frequency domain plots of the representative
signal before filtering. There are many noisy peaks in the frequency-domain response,
especially in the high-frequency region (≥ 100Hz). It is widely believed that high-frequency
signals are usually related to the ambient noise [42]. While, as shown in Figure 14, the
peaks of the spectrum are mainly concentrated in the low-frequency region after processing;
the filtering operator primarily eliminates the high-frequency noise.
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In this study, the standard Gaussian function is employed as the window function,
and its performance is affected by the deviation, σ. Figure 15 shows the accuracies of all
three damaged cases corresponding to different σ values, which are results based on the
linear SVM model. When the σ value is small, the accuracy sharply rises to a high point
as σ increases and remains stable in a certain range (i.e., optimal σ values). Afterwards,
the accuracy drops to a lower value and stays constant, but this is still higher than the
accuracy of the original data, which shows that data smoothing can improve the accuracy
of ML models. For these cases, the optimal σ value lies in the range of 1.8 to 6.6. A common
optimal σ value (e.g., σ = 3) can thereby be chosen by the optimizing operation as the
window function parameter of the filtering procedure.
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4.3. Discussion on the Pooling Procedure

As can be seen in Section 4.2, the function of the filtering process is to remove noise, which
is mainly high-frequency environmental noise in this study. Based on the filtered data, this

section explains the function of the pooling procedure, as well as the influence of
−
N or l.

Figure 16 presents the time-domain and frequency-domain responses obtained by
pooling the filtered data with a maximum operator that has a window length, l, of 20;

the data size after pooling,
−
N, is 400. It is noticed from the frequency-domain spectrum

that the operation removes all frequencies higher than 50 Hz (other frequencies are 0),
while the frequency information (e.g., the bridge frequency) lower than 50 Hz is primarily
preserved. In other words, it considerably reduces data redundancy while retaining the
main characteristics of the data; this is the key to the pooling procedure greatly improving
the model efficiency and further boosting the accuracy.
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The data size after pooling,
−
N, and its score on the ML model can be used to intuitively

evaluate the performance of the pooling operation. Based on the linear SVM model, the
accuracies of three damaged cases with different data sizes are presented in Figure 17. As
−
N decreases (or l increases), the accuracy gradually rises, reaches a peak, and then begins

to sharply drop. For these cases, peaks are obtained at
−
N ranging from 363 to 571 (l ranging

from 14 to 22). The optimizing operation will choose one of them as the optimal value

(e.g.,
−
N = 400). The optimal

−
N or l can balance the “complexity” and “diversity” of the

data to retain the necessary information while removing noise and redundancy; they can
maximize the performance of ML models. It is deemed that a valid drive-by measurement
should at least include the fundamental bridge frequency, if only the frequency spectrum
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is considered. In this study, it can be known from direct measurements that the bridge
frequency varies between 33.7 Hz and 35.5 Hz depending on the added mass, which infers
that the model score may drop below 60% (close to random guess) with l values between
28 and 30. However, the results show that the accuracy only falls below 60% when the data

size is around 222 (
−
N = 222), or l = 36 (close to random guess); the pooling operation is no

longer meaningful. One explanation is that the time-domain signal is more informative
than the frequency-domain signal; for example, damage information may also be contained
in local peaks of the time-domain amplitudes. The proposed processing method can largely
preserve this temporal information.
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Figure 17. Pooling performance with different data size.

From the comparison of low sampling rate and maximum pooling (see Figure 18), it
can be observed that, although the size of the data reduces with the decrease in sampling
frequency, the accuracy of damage detection does not decrease within a certain range (e.g.,
data length≥ 1500). From the perspective of accuracy, it can be considered that there is data
redundancy in the original data under these circumstances. In addition, the max pooling
operation is not just simply discarding data like the method of reducing the sampling
frequency, but extracting representative features from the data to improve accuracy.
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4.4. Discussion on the Sensor Location

The above results are based on the rear axle sensor, while this section will also compare
and discuss the results from the front axle sensor to show the influence of sensor location.
Figure 19a shows the comparison results of the average score improvement of different ML
models using rear-axle and front-axle data, and the average efficiency improvement can
be seen in Figure 19b; the efficiency improvement is calculated using Equation (5). The
computing platform of the front axle is the same as that of the rear axle. It is discovered
that there are no discernible differences between the two sensors’ accuracy or efficiency
improvements. This indicates that the present method’s performance is not significantly
affected by the sensor location. In fact, the present data processing algorithm is not strictly
limited to any SHM framework or method, but this needs further verification.



Materials 2023, 16, 2624 17 of 20

Materials 2023, 16, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) (b) 

Figure 19. Comparison results for rear and front axles. (a) Accuracy, (b) Efficiency. 

5. Conclusions 
A novel time-domain signal processing algorithm for the raw vehicle accelerations of 

data-driven drive-by inspection methods is proposed in this paper. It aims to improve the 
performance of ML-based drive-by methods for detecting bridge damage caused by ma-
terial deterioration or structural change. The data processing method consists of a filtering 
process to denoise the data, and a pooling process to equalize the data size and reduce 
data redundancy. To achieve the best data processing performance, an optimization ap-
proach is designed to automatically search for the optimal parameters, tuning the algo-
rithm. The present methodology has been validated via the dataset collected from the la-
boratorial experiments using a steel beam and a scale truck model. Its performance is 
demonstrated by its accuracy and efficiency improvement in damage detection with ML 
models. Based on the results and discussions, the following conclusions can be drawn: 
(1) The present algorithm can effectively improve the accuracy and efficiency of different 

ML models in damage detection. Compared to using raw data, the average accuracy 
increased by 12.2–15.0%, and the average efficiency increased by 35.7–96.7% for dif-
ferent damaged cases and ML models. This is of great benefit to the data-driven in-
direct SHM framework. 

(2) The filtering procedure primarily eliminates the noise in the data, which is the high-
frequency signal associated with ambient noise in this study. There are optimal win-
dow function parameters that may achieve the highest accuracy of ML models, but 
more than that, the results also show that data smoothing can be beneficial for im-
proving accuracy. 

(3) The pooling procedure further reduces noise and lessens data redundancy. Appro-
priate window lengths can balance the “complexity” and “diversity” of the data to 
retain the necessary information while removing noise and redundancy; they can 
greatly improve the performance of ML models. 

(4) When the proposed method is applied to process data from both the front axle and 
the rear axle, a similar accuracy or efficiency improvement can be obtained; the algo-
rithm is not significantly affected by the sensor location. 
Future work will test the proposed algorithm’s robustness under noise from more 

varied and complicated sources. The suggested approach may be used with semi-super-
vised or unsupervised learning techniques to build a new generation of smart bridges for 
health monitoring that are capable of automatically and accurately detecting damage. 

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, in-
vestigation, resources, data curation, writing—original draft preparation, visualization, Y.L.; 

Figure 19. Comparison results for rear and front axles. (a) Accuracy, (b) Efficiency.

5. Conclusions

A novel time-domain signal processing algorithm for the raw vehicle accelerations of
data-driven drive-by inspection methods is proposed in this paper. It aims to improve the
performance of ML-based drive-by methods for detecting bridge damage caused by mate-
rial deterioration or structural change. The data processing method consists of a filtering
process to denoise the data, and a pooling process to equalize the data size and reduce data
redundancy. To achieve the best data processing performance, an optimization approach is
designed to automatically search for the optimal parameters, tuning the algorithm. The
present methodology has been validated via the dataset collected from the laboratorial
experiments using a steel beam and a scale truck model. Its performance is demonstrated
by its accuracy and efficiency improvement in damage detection with ML models. Based
on the results and discussions, the following conclusions can be drawn:

(1) The present algorithm can effectively improve the accuracy and efficiency of different
ML models in damage detection. Compared to using raw data, the average accuracy
increased by 12.2–15.0%, and the average efficiency increased by 35.7–96.7% for
different damaged cases and ML models. This is of great benefit to the data-driven
indirect SHM framework.

(2) The filtering procedure primarily eliminates the noise in the data, which is the high-
frequency signal associated with ambient noise in this study. There are optimal
window function parameters that may achieve the highest accuracy of ML models,
but more than that, the results also show that data smoothing can be beneficial for
improving accuracy.

(3) The pooling procedure further reduces noise and lessens data redundancy. Appropri-
ate window lengths can balance the “complexity” and “diversity” of the data to retain
the necessary information while removing noise and redundancy; they can greatly
improve the performance of ML models.

(4) When the proposed method is applied to process data from both the front axle and the
rear axle, a similar accuracy or efficiency improvement can be obtained; the algorithm
is not significantly affected by the sensor location.

Future work will test the proposed algorithm’s robustness under noise from more var-
ied and complicated sources. The suggested approach may be used with semi-supervised
or unsupervised learning techniques to build a new generation of smart bridges for health
monitoring that are capable of automatically and accurately detecting damage.
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